Я пытаюсь создать систему, которая делает две вещи:
распознает человека перед моей веб-камерой
отправьте уведомление пользователю, который отправит фотографию человека перед камерой и скажет что-то вроде «незнакомец за вашим компьютером» или «Джейсон за вашим компьютером»
Первая часть выполнена, но, не зная BackEnd, я полностью игнорирую способ отправки уведомления.
import cv2
import dlib
import PIL.Image
import numpy as np
from imutils import face_utils
import argparse
from pathlib import Path
import os
import ntpath
parser = argparse.ArgumentParser(description='Alpha recognition ISI')
parser.add_argument('-i', '--input', type=str, required=True, help='directory of input known faces')
print('[INFO] Starting System...')
print('[INFO] Importing pretrained model..')
pose_predictor_68_point = dlib.shape_predictor("pretrained_model/shape_predictor_68_face_landmarks.dat")
pose_predictor_5_point = dlib.shape_predictor("pretrained_model/shape_predictor_5_face_landmarks.dat")
face_encoder = dlib.face_recognition_model_v1("pretrained_model/dlib_face_recognition_resnet_model_v1.dat")
face_detector = dlib.get_frontal_face_detector()
print('[INFO] Importing pretrained model..')
def transform(image, face_locations):
coord_faces = []
for face in face_locations:
rect = face.top(), face.right(), face.bottom(), face.left()
coord_face = max(rect[0], 0), min(rect[1], image.shape[1]), min(rect[2], image.shape[0]), max(rect[3], 0)
coord_faces.append(coord_face)
return coord_faces
def encode_face(image):
face_locations = face_detector(image, 1)
face_encodings_list = []
landmarks_list = []
for face_location in face_locations:
# DETECT FACES
shape = pose_predictor_68_point(image, face_location)
face_encodings_list.append(np.array(face_encoder.compute_face_descriptor(image, shape, num_jitters=1)))
# GET LANDMARKS
shape = face_utils.shape_to_np(shape)
landmarks_list.append(shape)
face_locations = transform(image, face_locations)
return face_encodings_list, face_locations, landmarks_list
def easy_face_reco(frame, known_face_encodings, known_face_names):
rgb_small_frame = frame[:, :, ::-1]
# ENCODING FACE
face_encodings_list, face_locations_list, landmarks_list = encode_face(rgb_small_frame)
face_names = []
for face_encoding in face_encodings_list:
if len(face_encoding) == 0:
return np.empty((0))
# CHECK DISTANCE BETWEEN KNOWN FACES AND FACES DETECTED
vectors = np.linalg.norm(known_face_encodings - face_encoding, axis=1)
tolerance = 0.6
result = []
for vector in vectors:
if vector <= tolerance:
result.append(True)
else:
result.append(False)
if True in result:
first_match_index = result.index(True)
name = known_face_names[first_match_index]
else:
name = "Unknown"
face_names.append(name)
for (top, right, bottom, left), name in zip(face_locations_list, face_names):
cv2.rectangle(frame, (left, top), (right, bottom), (0, 255, 0), 2)
cv2.rectangle(frame, (left, bottom - 30), (right, bottom), (0, 255, 0), cv2.FILLED)
cv2.putText(frame, name, (left + 2, bottom - 2), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 1)
for shape in landmarks_list:
for (x, y) in shape:
cv2.circle(frame, (x, y), 1, (255, 0, 255), -1)
if __name__ == '__main__':
args = parser.parse_args()
print('[INFO] Importing faces...')
face_to_encode_path = Path(args.input)
files = [file_ for file_ in face_to_encode_path.rglob('*.jpg')]
for file_ in face_to_encode_path.rglob('*.png'):
files.append(file_)
if len(files)==0:
raise ValueError('No faces detect in the directory: {}'.format(face_to_encode_path))
known_face_names = [os.path.splitext(ntpath.basename(file_))[0] for file_ in files]
known_face_encodings = []
for file_ in files:
image = PIL.Image.open(str(file_))
image = np.array(image)
face_encoded = encode_face(image)[0][0]
known_face_encodings.append(face_encoded)
print('[INFO] Faces well imported')
print('[INFO] Starting Webcam...')
video_capture = cv2.VideoCapture(0)
print('[INFO] Webcam well started')
print('[INFO] Detecting...')
while True:
ret, frame = video_capture.read()
easy_face_reco(frame, known_face_encodings, known_face_names)
cv2.imshow('Alpha Recognition ISI', frame)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
print('[INFO] Stopping System')
video_capture.release()
cv2.destroyAllWindows()