График с такими данными, как это, как я могу найти пики и впадины каждого «кластера»? в R - PullRequest
0 голосов
/ 03 февраля 2020

enter image description here

enter image description here

Мне нужны максимальные и минимальные значения каждого из этих кластеров, как бы я go о поиске этого?

Пример данных приведен ниже.

df = structure(list(X1 = c(2729, 2730, 2731, 2732, 2733, 2734, 2735, 
2736, 2737, 2738, 2739, 2740, 2741, 2742, 2743, 2744, 2745, 2746, 
2747, 2748, 2749, 2750, 2751, 2752, 2753, 2754, 2755, 2756, 2757, 
2758, 2759, 2760, 2761, 2762, 2763, 2764, 2765, 2766, 2767, 2768, 
2769, 2770, 2771, 2772, 2773, 2774, 2775, 2776, 2777, 2778, 2779, 
2780, 2781, 2782, 2783, 2784, 2785, 2786, 2787, 2788, 2789, 2790, 
2791, 2792, 2793, 2794, 2795, 2796, 2797, 2798, 2799, 2800, 2801, 
2802, 2803, 2804, 2805, 2806, 2807, 2808, 2809, 2810, 2811, 2812, 
2813, 2814, 2815, 2816, 2817, 2818, 2819, 2820, 2821, 2822, 2823, 
2824, 2825, 2826, 2827, 2828, 2829, 2830, 2831, 2832, 2833, 2834, 
2835, 2836, 2837, 2838, 2839, 2840, 2841, 2842, 2843, 2844, 2845, 
2846, 2847, 2848, 2849, 2850, 2851, 2852, 2853, 2854, 2855, 2856, 
2857, 2858, 2859, 2860, 2861, 2862, 2863, 2864, 2865, 2866, 2867, 
2868, 2869, 2870, 2871, 2872, 2873, 2874, 2875, 2876, 2877, 2878, 
2879, 2880, 2881, 2882, 2883, 2884, 2885, 2886, 2887, 2888, 2889, 
2890, 2891, 2892, 2893, 2894, 2895, 2896, 2897, 2898, 2899, 2900, 
2901, 2902, 2903, 2904, 2905, 2906, 2907, 2908, 2909, 2910, 2911, 
2912, 2913, 2914, 2915, 2916, 2917, 2918, 2919, 2920, 2921, 2922, 
2923, 2924, 2925, 2926, 2927, 2928, 2929, 2930, 2931, 2932, 2933, 
2934, 2935, 2936, 2937, 2938, 2939, 2940, 2941, 2942, 2943, 2944, 
2945, 2946, 2947, 2948, 2949, 2950, 2951, 2952, 2953, 2954, 2955, 
2956, 2957, 2958, 2959, 2960, 2961, 2962, 2963, 2964, 2965, 2966, 
2967, 2968, 2969, 2970, 2971, 2972, 2973, 2974, 2975, 2976, 2977, 
2978, 2979, 2980, 2981, 2982, 2983, 2984, 2985, 2986, 2987, 2988, 
2989, 2990, 2991, 2992, 2993, 2994, 2995, 2996, 2997, 2998, 2999, 
3000, 3001, 3002, 3003, 3004, 3005, 3006, 3007, 3008, 3009, 3010, 
3011, 3012, 3013, 3014, 3015, 3016, 3017, 3018, 3019, 3020, 3021, 
3022, 3023, 3024, 3025, 3026, 3027, 3028, 3029, 3030, 3031, 3032, 
3033, 3034, 3035, 3036, 3037, 3038, 3039, 3040, 3041, 3042, 3043, 
3044, 3045, 3046, 3047, 3048, 3049, 3050, 3051, 3052, 3053, 3054, 
3055, 3056, 3057, 3058, 3059, 3060, 3061, 3062, 3063, 3064, 3065, 
3066, 3067, 3068, 3069, 3070, 3071, 3072, 3073, 3074, 3075, 3076, 
3077, 3078, 3079, 3080, 3081, 3082, 3083, 3084, 3085, 3086, 3087, 
3088, 3089, 3090, 3091, 3092, 3093, 3094, 3095, 3096, 3097, 3098, 
3099, 3100, 3101, 3102, 3103, 3104, 3105, 3106, 3107, 3108, 3109, 
3110, 3111, 3112, 3113, 3114, 3115, 3116, 3117, 3118, 3119, 3120, 
3121, 3122, 3123, 3124, 3125, 3126, 3127, 3128, 3129, 3130, 3131, 
3132, 3133, 3134, 3135, 3136, 3137, 3138, 3139, 3140, 3141, 3142, 
3143, 3144, 3145, 3146, 3147, 3148, 3149, 3150, 3151, 3152, 3153, 
3154, 3155, 3156, 3157, 3158, 3159, 3160, 3161, 3162, 3163, 3164, 
3165, 3166, 3167, 3168, 3169, 3170, 3171, 3172, 3173, 3174, 3175, 
3176, 3177, 3178, 3179, 3180, 3181, 3182, 3183, 3184, 3185, 3186, 
3187, 3188, 3189, 3190, 3191, 3192, 3193, 3194, 3195, 3196, 3197, 
3198, 3199, 3200, 3201, 3202, 3203, 3204, 3205, 3206, 3207, 3208, 
3209, 3210, 3211, 3212, 3213, 3214, 3215, 3216, 3217, 3218, 3219, 
3220, 3221, 3222, 3223, 3224, 3225, 3226, 3227, 3228, 3229, 3230, 
3231, 3232, 3233, 3234, 3235, 3236, 3237, 3238, 3239, 3240, 3241, 
3242, 3243, 3244, 3245, 3246, 3247, 3248, 3249, 3250, 3251, 3252, 
3253, 3254, 3255, 3256, 3257, 3258, 3259, 3260, 3261, 3262, 3263, 
3264, 3265, 3266, 3267, 3268, 3269, 3270, 3271, 3272, 3273, 3274, 
3275, 3276, 3277, 3278, 3279, 3280, 3281, 3282, 3283, 3284, 3285, 
3286, 3287, 3288, 3289, 3290, 3291, 3292, 3293, 3294, 3295, 3296, 
3297, 3298, 3299, 3300, 3301, 3302, 3303, 3304, 3305, 3306, 3307, 
3308, 3309, 3310, 3311, 3312, 3313, 3314, 3315, 3316, 3317, 3318, 
3319, 3320, 3321, 3322, 3323, 3324, 3325, 3326, 3327, 3328, 3329, 
3330, 3331, 3332, 3333, 3334, 3335, 3336, 3337, 3338, 3339, 3340, 
3341, 3342, 3343, 3344, 3345, 3346, 3347, 3348, 3349, 3350, 3351, 
3352, 3353, 3354, 3355, 3356, 3357, 3358, 3359, 3360, 3361, 3362, 
3363, 3364, 3365, 3366, 3367, 3368, 3369, 3370, 3371, 3372, 3373, 
3374, 3375, 3376, 3377, 3378, 3379, 3380, 3381, 3382, 3383, 3384, 
3385, 3386, 3387, 3388, 3389, 3390, 3391, 3392, 3393, 3394, 3395, 
3396, 3397, 3398, 3399, 3400, 3401, 3402, 3403, 3404, 3405, 3406, 
3407, 3408, 3409, 3410, 3411, 3412, 3413, 3414, 3415, 3416, 3417, 
3418, 3419, 3420, 3421, 3422, 3423, 3424, 3425, 3426, 3427, 3428, 
3429, 3430, 3431, 3432, 3433, 3434, 3435, 3436, 3437, 3438, 3439, 
3440, 3441, 3442, 3443, 3444, 3445), X2 = c(-0.00385000000001254, 
-0.0154500000000484, -0.0277600000000007, -0.0154500000000279, 
-0.0386000000000704, -0.0154500000000329, -0.0115500000000053, 
2.5238009638656e-15, -0.00385000000000757, 3.60475000000867, 
-0.470850000000881, -0.347350000000663, -0.173700000000328, -0.139699999999998, 
-0.096500000000187, -0.0617500000001111, -0.0579000000001016, 
-0.0424500000000768, -0.050150000000105, -0.0579000000001191, 
-0.0540000000000976, -0.0579000000001924, -0.0270000000000563, 
-0.0309000000000539, -0.0231500000000468, -0.0270500000000538, 
-0.00775000000002209, -0.0193000000000404, -0.0131199999999931, 
0.219999999999842, 0.0579000000001427, -0.061750000000126, -0.0617500000002055, 
-0.0309000000000726, -0.050150000000105, -0.042450000000091, 
-0.0193000000000293, -0.0309000000000144, -0.0115500000000196, 
-0.0116000000000154, -0.0154500000000366, -0.00385000000000946, 
-0.0193000000000305, -0.00390000000000946, -0.00390000000000639, 
-0.00771000000000015, -0.000789999999999225, -4.97400384373025e-15, 
-0.00619000000000085, -0.0116000000000265, -0.011550000000014, 
-0.00385000000000504, -0.00538999999999987, -0.0116000000000203, 
-0.011550000000014, 0.00385000000001136, -0.00230999999999795, 
2.86419210237446e-15, -0.00230999999999954, -0.00770000000002508, 
-0.00770000000001703, -0.00390000000000449, -0.0085000000000008, 
-0.0193000000000529, -8.05101707233625e-15, -0.00385000000001751, 
-0.0146699999999988, -0.00619000000000085, -0.0116000000000265, 
0.00153999999999996, 0.00385000000000546, -0.00231000000000233, 
-0.000780000000000314, -0.00230999999999884, 0.0015400000000021, 
-8.05101707233625e-15, -0.00848000000000013, -0.00385000000001751, 
-0.00775000000003729, -0.00769999999999792, -1.1787959787484e-15, 
-0.00384999999999692, 0.00385000000001136, -0.00384999999999762, 
0.00385000000000639, -0.00385000000001161, -0.000440000000001542, 
-0.00390000000000639, -0.000769999999999981, 0, -0.0154500000000091, 
-0.0077500000000059, -0.0154500000000335, -0.0115500000000165, 
-0.00385000000000567, -0.00311000000000092, 0.0116000000000272, 
-0.00230999999999994, 0.0116000000000172, 0.00770000000001277, 
-0.00385000000000377, -0.00385000000001254, 0.00385000000001136, 
-0.00385000000000411, -0.0038499999999997, -0.0116000000000215, 
-0.0154300000000006, -6.15348059644161e-15, -0.00849999999999866, 
-0.0015500000000003, 0.00154000000000174, -3.07674029821757e-15, 
-0.0115500000000345, -0.0115500000000165, -6.15348059644161e-15, 
-0.00385000000002247, 0.0077000000000059, -0.00385000000001254, 
-0.0115500000000315, -0.0154500000000107, -0.0154500000000229, 
-0.0309000000000733, -1.65190000000256, -0.258600000000477, -0.111900000000204, 
-0.0640499999999989, -0.0579000000001016, -0.0270000000000494, 
-0.02393, -0.0193000000000324, -0.0115500000000165, -0.0270000000000624, 
-0.0193000000000598, -0.0309000000000733, -0.0463000000001036, 
-2.19220000000482, -0.524900000000959, -0.189100000000636, -0.11580000000022, 
-0.0717700000000001, -0.0424500000001407, -0.057900000000101, 
-0.0386000000000673, -0.0193000000000449, -0.0277899999999995, 
-0.0077500000000276, -0.0208600000000011, -0.0193000000000293, 
-0.0463000000000912, -0.0386000000000716, -0.0501500000001031, 
-0.0347500000000728, -0.0502000000000926, -0.0424500000000836, 
-0.00307999999999993, -0.0116000000000234, 0.00389999999999833, 
-0.000769999999999981, -0.00153999999999996, -0.00153999999999996, 
0.00153999999999783, -0.0162100000000009, -0.0386000000000797, 
-0.0432300000000026, -0.038600000000117, -0.050200000000097, 
-0.0309000000000527, -0.0231500000000593, 0.00461999999999989, 
-0.00385000000001064, -0.00385000000000757, -0.0116000000000215, 
0.00770000000004104, 0.00385000000000639, -0.941700000001459, 
-0.169850000000308, -0.100350000000196, -0.0933799999999984, 
-0.0617500000001154, -0.0579000000001165, -0.0386000000000822, 
-0.019300000000043, -0.0231500000000629, -0.0115500000000165, 
-0.0270000000000464, -0.0116000000000284, -0.00769999999999982, 
-2.76340000000441, -0.270200000000513, -0.119650000000229, -0.108100000000387, 
-0.0540000000001033, -0.0772000000001527, -0.0579000000001345, 
-0.0656000000001255, -0.0540500000001704, -0.0386000000000716, 
-0.0270500000000663, -0.0116000000000284, -0.0216200000000043, 
-0.00770000000001206, -0.0308500000000552, -0.0115500000000265, 
-2.4190463576414e-14, -0.00770000000003006, -0.0115900000000011, 
-0.0231500000000985, -0.0193000000000293, -0.033979999999999, 
-0.00775000000002643, -0.0478400000000022, -0.0231500000000412, 
-0.019300000000043, -0.00233000000000134, -0.00390000000002501, 
0.00154999999999958, 0.00384999999999991, 0.0077000000000059, 
-0.00770000000003193, -0.0200899999999983, -0.0193000000000423, 
-0.0347000000000634, -0.0540000000000927, -0.0733500000001364, 
-0.0501500000001637, -0.0424500000000886, -0.050200000000087, 
-0.0308500000000459, 0.00384999999999834, -0.00231000000000208, 
-0.00387000000000167, 0.0030799999999978, -0.00385000000000757, 
-0.00385000000001064, -0.0192500000000504, -0.0115500000000296, 
-0.0231500000001104, -0.0579000000001085, -0.0733500000001314, 
-0.0386000000000697, -0.0386000000000754, -0.0347500000000935, 
-0.00775000000001395, 0.00385000000000881, 0.000769999999999982, 
0.0115500000000203, 0.00390000000001095, 0.00154000000000294, 
-0.00385000000001497, -0.00385000000000567, -0.0309000000001234, 
-0.0347500000000728, -0.0193000000000814, -0.0424500000000992, 
-0.0347500000000678, 0.274000000000822, 0.463150000000818, 1.03820000000353, 
0.636800000000563, -0.13663, -0.87225000000281, 0.644550000001354, 
-0.0579000000003174, -0.72560000000209, -0.115800000000169, 2.08025000000553, 
-0.208400000000342, -0.227700000000415, -0.328050000000636, -0.169850000000303, 
-0.104200000000212, -0.0656500000001349, -0.0656500000001373, 
-0.0424500000000712, -0.0347500000000697, -0.0285600000000002, 
-0.0193000000000324, -0.0270000000000538, -0.0193000000000498, 
-0.0270000000000513, -0.00849999999999724, -0.00770000000001513, 
-0.0162100000000009, -0.0339800000000025, -0.0502000000001566, 
-0.0501500000000907, -0.0193000000000454, -0.00770000000001893, 
0.00385000000001136, 0.00390000000001402, 0.00153999999999996, 
-0.00307999999999993, 0.00390000000000023, 0.00384999999999834, 
0.00384999999999644, 0.00385000000002943, -0.0138899999999971, 
-0.0223899999999993, -0.0270500000000588, -0.00618999999999943, 
-0.0270500000000669, 0.00153999999999892, -0.000779999999999603, 
-2.5238009638656e-15, 0.00465000000000089, -0.00770000000001703, 
-2.91289464345889e-16, 0.00461999999999805, -0.0115900000000011, 
-0.00390000000001506, -0.019300000000043, -0.0115899999999989, 
-0.0115900000000011, -0.00770000000003258, 0, 0.00390000000000331, 
0.0193000000000281, 0.00385000000002044, 0.00770000000002145, 
0.00770000000000148, 0.0077000000000078, 0, 0.00308000000000135, 
-6.15348059644161e-15, -0.015450000000036, -0.0309000000000726, 
-0.00385000000001254, -0.0154000000000341, -1.11274169835756e-14, 
-0.00923999999999978, -0.00234000000000107, -0.00770999999999944, 
0.00385000000003251, 0.00461999999999429, 0.00385999999999811, 
-0.00770000000000798, -0.023150000000093, -0.0154500000000348, 
-0.0424500000000737, -0.019300000000043, -0.0308500000000125, 
-0.0309000000001054, -0.0231500000000394, -1.1787959787484e-15, 
0.000790000000000646, -0.00231000000000036, 0, -0.00307999999999851, 
-0.00390000000002326, -0.00230999999999753, -0.0193100000000022, 
-0.042450000000016, -0.0385500000000679, -0.057900000000106, 
-0.0347000000000627, -0.0386000000000922, -0.00385000000000445, 
0.0077500000000097, 0.00230999999999995, -0.00385000000000352, 
0.00307999999999948, -0.000769999999999381, -1.1787959787484e-15, 
-0.015440000000001, -0.0193000000000099, -0.0425000000000806, 
-0.0386000000000829, -0.0424500000001675, -0.0386000000000773, 
-0.0463000000000192, -0.00385000000001562, 0, 0.00769999999999875, 
-3.07674029821757e-15, -0.00307999999999922, -0.0030799999999978, 
-0.0154000000000493, -0.00385000000001254, -0.0231500000000079, 
-0.0347500000000802, -0.0231500000000319, -0.0355200000000003, 
-0.0386000000000829, -0.0463500000000801, -0.0347500000000678, 
0.00155999999999792, 0.00385000000000639, -0.00385000000000231, 
0, -0.00385000000000946, -0.00153999999999966, 0, -0.0285600000000002, 
-0.0309000000000546, -0.069450000000125, -0.0502000000000889, 
-0.0502000000000896, 0.3898000000001, 0.0540500000001028, 0.0115500000000253, 
0.0116000000000142, 0.000769999999999981, -0.00385000000000504, 
-7.40090066366128e-15, -0.00230999999999995, 0.00385000000000141, 
0.00385000000000639, -0.00385000000001254, -0.0270199999999981, 
-0.0502000000000896, 0.409100000000679, 0.0386000000000674, -0.0116000000000445, 
-0.00775000000004081, -0.00307999999999993, -0.00385000000000757, 
-0.00770000000000208, -0.00385000000001562, -0.00385000000001064, 
-0.00153999999999783, -8.05101707233625e-15, -0.0177499999999995, 
-0.0424500000001796, -0.0509500000000003, -0.0694500000001324, 
-0.0424500000001587, -0.061750000000121, -0.0232000000000369, 
-0.0131299999999989, -0.00153999999999886, 0.0077000000000059, 
-0.00310999999999879, 0.00769999999999982, 7.49841812496252e-15, 
-8.05101707233625e-15, -0.0077000000000406, -0.0424500000000787, 
-0.0502000000001032, -0.0347500000000747, -0.0656000000001262, 
-0.0733000000001494, -0.034700000000074, -0.0193000000000869, 
0.0231500000000662, -0.00385000000000757, 0.00770000000001088, 
0.0115600000000001, -0.957150000001501, -0.14670000000027, -0.0772000000001383, 
-0.0617500000002002, -0.0463000000000981, -0.0617500000001229, 
-0.0270000000000544, -0.0347500000000597, -0.0386000000001412, 
-0.0694500000001331, -0.0887500000001619, -0.0386000000000747, 
-0.0077500000000295, 0.015400000000064, 0.355050000000611, 0.0478699999999975, 
-6.15348059644161e-15, -0.0177800000000019, -0.00385000000001064, 
-0.0116000000000674, -0.0154500000000435, -0.0524900000000017, 
-0.0540500000002006, -0.0540500000001021, -0.0617500000002394, 
-0.0308500000000688, -0.0193000000000355, -0.0154000000000216, 
-0.000770000000000204, 0.00770000000001775, 0.00694000000000017, 
-0.00385000000001254, 0.0116000000000123, -0.00385000000002063, 
-0.00385000000000757, -0.0270000000000743, -0.0309000000000763, 
-0.0926500000001775, -0.0887500000003161, -0.0656500000001199, 
-0.042450000000078, -0.0270000000000588, -0.0116000000000364, 
-0.000769999999999982, -0.00385000000001254, -0.015400000000026, 
0.00385000000002041, 0.0115500000000253, 0, -0.00385000000001161, 
-0.0386000000000723, -0.0154500000000693, -0.100350000000196, 
-0.0849000000001704, -0.0926500000001751, -0.0115500000000116, 
0.00385000000000546, -0.0116000000000154, 6.87160777622118e-15, 
-0.00384999999999991, 0.00231999999999886, -3.07674029821757e-15, 
0.00390000000003514, 0.000779999999996745, -3.07674029821757e-15, 
-0.0231500000000617, -0.0270500000000527, -0.0517200000000003, 
-0.050150000000105, -0.0347500000000721, -0.0347500000000142, 
-0.00385000000001161, 0.00770000000000401, -0.00385000000000197, 
0.000769999999999982, -0.00385000000001372, 0.00385000000000141, 
0.0116000000000278, -3.71670324204166e-15, -0.0116000000000584, 
-0.00385000000001064, -0.00464999999999875, -0.00775000000004982, 
-0.00390000000001506, 0.277900000000906, 0.119650000000208, 0.054000000000013, 
0.0463000000000931, 0.0154500000000168, 0.00775000000000384, 
0.0115500000000154, 0.00769999999999875, 1.89760393249092e-15, 
0.00231999999999957, 0.000769999999999304, -0.0231500000000085, 
-0.0270500000000402, 0.351200000000562, -0.0231500000000833, 
-0.0270500000000588, -0.0463500000000216, -0.0139000000000062, 
-9.23022089465272e-15, -8.05101707233625e-15, 0.00385000000000546, 
0.000759999999998229, -0.0115500000000395, 0.000769999999999982, 
-0.011600000000024, -0.00770000000001206, -0.0540500000001929, 
-0.0772000000001558, -0.0656000000000217, -0.0772000000001484, 
-0.0579000000001128, -0.0347000000000764, -0.0193000000000461, 
-0.00385000000000352, -0.00385000000002122, -0.00696000000000083, 
0.000789999999999225, 0.00384999999999834, -0.000800000000000978, 
-0.0116000000000234, -0.00775000000001088, -0.0115900000000055, 
-0.0193000000000218, -0.0347500000000808, -0.0386000000000897, 
-0.0501500000000858, -0.00233999999999881, -0.00385000000000757, 
2.00000000009208e-05, 0.308750000000515, 0.092650000000154, 0.0424500000000756, 
0.0231500000000227, 0.0154500000000312, -0.00385000000001469, 
0.00538999999999237, 0.474750000000936, 0.212300000000357, -0.0030699999999996, 
-0.0309000000000739, -0.0115500000000265, -0.0116000000000265, 
-3.57390000000716, -0.293350000001048, -0.119650000000226, -0.104200000000194, 
-0.0926500000001831, -0.0540500000001096, -0.0694500000002714, 
-0.0772000000001527, -0.0965000000001976, -0.0694500000001375, 
-0.100350000000182, -0.084950000000289, -0.061750000000121, -0.0425000000000912, 
-0.0424500000000662, -0.00770000000002011, -0.0154500000000422, 
-0.00307999999999993, -0.00230999999999994, 0.00385000000001447, 
-0.00154, -0.00385000000000567, -0.0386000000000747, -0.0695000000002463, 
-0.0772000000001664, -0.0849000000002961, -0.0887500000001668, 
-0.0193000000000504, -0.0578500000001047, -0.00775000000000708, 
-1.2095231788207e-14, 0.00848999999999485, -3.07674029821757e-15, 
-0.00541000000000057, -0.00390000000002247, 0.000769999999999981, 
-0.0293300000000002, -0.050200000000087, -0.0656000000002546, 
-0.0540500000001096, -0.069450000000138, 0.123500000000375, 0.0849000000001387, 
0.00384999999999644, 0.023200000000042, 0.0115500000000123, 0.00775000000000473, 
0.0115500000000203, 0.00385000000001447, -0.00775000000002506, 
0.00466000000000122, -0.0254699999999978, -0.054799999999998, 
-0.0231500000000444, 0.0116000000000454, 0.115800000000206, 0.030900000000046, 
0.00385000000000331, -0.00153999999999996, 0.00384999999999084, 
-0.00385000000000757, 0.00770000000001088, 1.7849988639723e-14, 
0.00230999999999994, 0.00385000000001326, -0.00153999999999882, 
-0.038600000000126, -0.0309000000000553, -0.00692999999999628, 
-0.0154000000000403, -0.0579000000001097, -0.0347500000000678, 
-0.0100400000000054, 0.00385000000000023, -0.00385000000001994, 
-2.17923926727129e-14, 0.00389999999999028, 0.00390000000001402, 
0.00384999999999084, -0.00385000000001751, 0.00770000000001399, 
-0.0308500000000632, -0.0502000000001986, -0.0695000000001394, 
-0.0501799999999982, -0.0309000000000752, -0.0270500000000557, 
-0.0100500000000011, 0.00389999999999596, 0.0116000000000117, 
1.89760393249092e-15, 0.0115500000000123, 0.00384999999998841, 
-0.00385000000002965, 0.0077000000000078, 0.00385000000000639, 
0.00770000000000283, -0.0501500000001132, -0.0617500000002242, 
-0.0710100000000004, -0.0810500000000306, -0.0540500000001891, 
-0.0386000000000617, -0.019300000000043, 0.00775000000000473, 
0.00847000000000282, 0.00462999999999951, -2.11128370304365e-14, 
0.00770000000001088, 0.00384999999999858, 9.99999999962123e-06, 
-0.00770000000001206, -0.0733000000000254, -0.0656000000001967, 
-0.111900000000213, -0.100350000000323, -0.0579000000001141, 
-0.0385500000000131, -0.0116000000000215, 0.0193000000000318, 
0.00390000000001402, 0.0270000000000452, 0.00770000000000182, 
-8.05101707233625e-15)), row.names = c(NA, -717L), class = "data.frame")

Ответы [ 2 ]

1 голос
/ 03 февраля 2020

Аналогично StupidWolf a убедительный пример, который вы дали в data.frame с столбцами index и values.

Затем я удалил значение, слишком близкое к 0, используя threshold вам нужно определить (здесь 0,1) и кластеризовать значения с максимумом clust_max_size смежных индексов (здесь) 20.

Затем я вычисляю минимальное и максимальное значения для каждого кластера и возвращаю data.frame содержит номер кластера, первый и последний индекс кластера и минимальный максимум для этого кластера.

    # The data are in a data.frame `df` with columns `index` and `values`

thresh <- .1         # ignore values between -0.1 and 0.1
clust_max_size <- 20 # a cluster contains a maximum of 20 contiguous values

# filter using the threshold
df <- df[df$value < - thresh | df$value > thresh, ]

# data frame to keep the position of the clusters
clusters <- data.frame()

df$cluster <- NA
n_clus <- 1
i <- 1
while(i <= max(df$index)) {
  # a cluster begins at the smaller index in `df` greater than or equal to `i`
  i <- min(df$index[df$index >= i]) - 1
  # upper bound of the cluster is at most the biggest index value
  upper_bound <- min(i + clust_max_size, max(df$index))

  # assign the cluster number
  df[df$index > i & df$index <= upper_bound, "cluster"] <- n_clus

  # record cluster position
  clusters <- rbind(
    clusters,
    data.frame(
      cluster = n_clus,
      lower = i + 1,
      upper = max(df$index[df$index <= upper_bound])
    )
  )

  n_clus <- n_clus + 1
  i <- upper_bound + 1
}

# calculate min and max of each cluster
minmax <- aggregate(
  df$value,
  list(cluster = df$cluster),
  function(x) c(min = min(x), max = max(x))
)

# merge cluster positions and min - max
clusters <- merge(clusters, minmax, by = "cluster")

Вы можете изменить threshold и clust_max_size в соответствии со своими потребностями. Возможно, вы также захотите запустить его на разных подмножествах data.frame, если считаете, что в кластере существует неоднородность.

1 голос
/ 03 февраля 2020

Я преобразовал вашу таблицу в data.frame, который легче копировать и вставлять другим. Ваши данные Так что если мы назовем ваш data.frame выше как df, вы можете использовать функцию peaks из пакета splus2R.

Вам нужно определить как окно (span ниже), для которого вы хотите вызвать максимумы (или минимумы) и предпочтительно threshold (выше или ниже определенного числа), прежде чем вы захотите рассмотреть it.

Сначала функция для этого:

library(splus2R)
callPeaks = function(xvalues,yvalues,threshold,span){
xvalues[which(peaks(yvalues,span=span) & yvalues > threshold)]
}

Затем мы собираем положительные и отрицательные координаты пика.

pos_peaks = callPeaks(df[,1],df[,2],0.3,15)
neg_peaks = callPeaks(df[,1],-df[,2],0.3,15)

И мы визуализируем это:

plot(df)
abline(v=c(pos_peaks,neg_peaks),lty=8,col="steelblue")

enter image description here

Пики будут подмножеством кадра данных df:

df[df[,1] %in% c(pos_peaks,neg_peaks),]
          X1       X2
10  2738  3.60475
11  2739 -0.47085
123 2851 -1.65190
136 2864 -2.19220
175 2903 -0.94170
188 2916 -2.76340
258 2986  1.03820
261 2989 -0.87225
266 2994  2.08025
398 3126  0.38980
411 3139  0.40910
448 3176 -0.95715
462 3190  0.35505
545 3273  0.35120
588 3316  0.47475
594 3322 -3.57390

Скорее всего, вам нужно поэкспериментировать с порог и интервал, чтобы получить максимумы или минимумы, которые вы хотели бы ..

...