Я использую Keras, чтобы предсказать, получу ли я вывод 1 или 0. Данные выглядят так:
funded_amnt emp_length avg_cur_bal num_actv_rev_tl loan_status
10000 5.60088 19266 2 1
13750 5.60088 2802 6 0
26100 10.0000 19241 17 1
Цель - loan_status
, а функции - остальные. Я нормализовал данные, прежде чем приступить к построению модели нейронной сети.
Вот форма моих данных обучения и тестирования:
print(X_train.shape,Y_train.shape)
# Output: (693, 4) (693,)
print(X_test.shape,Y_test.shape)
# Output: (149, 4) (149,)
Процесс, которому я следовал при построении нейронной сети: :
# define the keras model
model = Sequential()
model.add(Dense(4, input_dim=4,activation='relu'))
model.add(Dense(4 ,activation='relu'))
model.add(Dense(1,activation='sigmoid'))
# compile the keras model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
# fit the keras model on the dataset
hist = model.fit(X_train, Y_train, epochs=10, batch_size=2)
Вывод после запуска hist
:
Epoch 1/10
693/693 [==============================] - 2s 2ms/step - loss: 0.6379 - acc: 0.7013
Epoch 2/10
693/693 [==============================] - 0s 611us/step - loss: 0.5207 - acc: 0.7951
Epoch 3/10
693/693 [==============================] - 0s 605us/step - loss: 0.5126 - acc: 0.7951
Epoch 4/10
693/693 [==============================] - 0s 621us/step - loss: 0.5109 - acc: 0.7951
Epoch 5/10
693/693 [==============================] - 0s 611us/step - loss: 0.5105 - acc: 0.7951
Epoch 6/10
693/693 [==============================] - 0s 636us/step - loss: 0.5091 - acc: 0.7951
Epoch 7/10
693/693 [==============================] - 0s 644us/step - loss: 0.5090 - acc: 0.7951
Epoch 8/10
693/693 [==============================] - 0s 659us/step - loss: 0.5086 - acc: 0.7951
Epoch 9/10
693/693 [==============================] - 0s 668us/step - loss: 0.5083 - acc: 0.7951
Epoch 10/10
693/693 [==============================] - 0s 656us/step - loss: 0.5076 - acc: 0.7951
это почти то же самое и не меняется после второй эпохи. Я пытался изменить количество эпох и размер партии, но получаю одинаковые результаты. Это нормально? или это признак переоснащения и мне нужно изменить некоторые параметры