Я использую следующий код:
https://www.kaggle.com/tanlikesmath/diabetic-retinopathy-with-resnet50-oversampling
Однако при расчете метрик я получаю следующую ошибку:
File "main.py", line 50, in <module>
learn.fit_one_cycle(4,max_lr = 2e-3)
...
File "main.py", line 39, in quadratic_kappa
return torch.tensor(cohen_kappa_score(torch.argmax(y_hat,1), y, weights='quadratic'),device='cuda:0')
...
File "/pfs/work7/workspace/scratch/ul_dco32-conda-0/conda/envs/resnet50/lib/python3.8/site-packages/torch/tensor.py", line 486, in __array__
return self.numpy()
TypeError: can't convert CUDA tensor to numpy. Use Tensor.cpu() to copy the tensor to host memory first.
Вот метрики и модель:
def quadratic_kappa(y_hat, y):
return torch.tensor(cohen_kappa_score(torch.argmax(y_hat,1), y, weights='quadratic'),device='cuda:0')
learn = cnn_learner(data, models.resnet50, metrics = [accuracy,quadratic_kappa])
learn.fit_one_cycle(4,max_lr = 2e-3)
Как уже говорилось в обсуждении https://discuss.pytorch.org/t/typeerror-can-t-convert-cuda-tensor-to-numpy-use-tensor-cpu-to-copy-the-tensor-to-host-memory-first/32850/6
, я должен вернуть данные к cpu
. Но я немного растерялся, как это сделать.
Я пытался добавить .cpu()
по всем показателям, но пока не смог решить.