Эффективный алгоритм усечения строк, последовательно удаляющий одинаковые префиксы и суффиксы - PullRequest
11 голосов
/ 10 января 2020

Ограничение времени на тест: 5 секунд
Ограничение памяти на тест: 512 мегабайт

Вам предоставляется строка s длины n (n ≤ 5000). Вы можете выбрать любой правильный префикс этой строки, который также является ее суффиксом, и удалить либо выбранный префикс, либо соответствующий суффикс. Затем вы можете применить аналогичную операцию к результирующей строке и так далее. Какова минимальная длина конечной строки, которая может быть достигнута после применения оптимальной последовательности таких операций?

Ввод
Первая строка каждого теста содержит строку s, состоящую из маленьких букв Engli sh.

Выход
Выведите единственное целое число - минимальную длину конечной строки, которая может быть достигнута после применения оптимальной последовательности таких операций.

Примеры +-------+--------+----------------------------------+ | Input | Output | Explanation | +-------+--------+----------------------------------+ | caaca | 2 | caaca → ca|aca → aca → ac|a → ac | +-------+--------+----------------------------------+ | aabaa | 2 | aaba|a → a|aba → ab|a → ab | +-------+--------+----------------------------------+ | abc | 3 | No operations are possible | +-------+--------+----------------------------------+

Вот что мне удалось сделать до сих пор:

  1. Вычислить префиксную функцию для всех подстрок данной строки в O (n ^ 2)

  2. Проверьте результат выполнения всех возможных комбинаций операций в O (n ^ 3 )

Мое решение проходит все тесты при n ≤ 2000, но превышает ограничение по времени, когда 2000 <<code>n ≤ 5000. Вот его код:

#include <iostream>
#include <string>

using namespace std;

const int MAX_N = 5000;

int result; // 1 less than actual

// [x][y] corresponds to substring that starts at position `x` and ends at position `x + y` =>
// => corresponding substring length is `y + 1`
int lps[MAX_N][MAX_N]; // prefix function for the substring s[x..x+y]
bool checked[MAX_N][MAX_N]; // whether substring s[x..x+y] is processed by check function

// length is 1 less than actual
void check(int start, int length) {
    checked[start][length] = true;
    if (length < result) {
        if (length == 0) {
            cout << 1; // actual length = length + 1 = 0 + 1 = 1
            exit(0); // 1 is the minimum possible result
        }
        result = length;
    }
    // iteration over all proper prefixes that are also suffixes
    // i - current prefix length
    for (int i = lps[start][length]; i != 0; i = lps[start][i - 1]) {
        int newLength = length - i;
        int newStart = start + i;
        if (!checked[start][newLength])
            check(start, newLength);
        if (!checked[newStart][newLength])
            check(newStart, newLength);
    }
}

int main()
{
    string str;
    cin >> str;
    int n = str.length();
    // lps calculation runs in O(n^2)
    for (int l = 0; l < n; l++) {
        int subLength = n - l;
        lps[l][0] = 0;
        checked[l][0] = false;
        for (int i = 1; i < subLength; ++i) {
            int j = lps[l][i - 1];
            while (j > 0 && str[i + l] != str[j + l])
                j = lps[l][j - 1];
            if (str[i + l] == str[j + l])  j++;
            lps[l][i] = j;
            checked[l][i] = false;
        }
    }
    result = n - 1;
    // checking all possible operations combinations in O(n^3)
    check(0, n - 1);
    cout << result + 1;
}

Q: Есть ли более эффективное решение?

1 Ответ

5 голосов
/ 13 января 2020

Вот один из способов получить логарифмический коэффициент. Пусть dp[i][j] будет истиной, если мы сможем достичь подстроки s[i..j]. Тогда:

dp[0][length(s)-1] ->
  true

dp[0][j] ->
  if s[0] != s[j+1]:
    false
  else:
    true if any dp[0][k]
      for j < k ≤ (j + longestMatchRight[0][j+1])

  (The longest match we can use is
   also bound by the current range.)

(Initialise left side similarly.)

Теперь итерируем извне:

for i = 1 to length(s)-2:
  for j = length(s)-2 to i:
    dp[i][j] ->
      // We removed on the right
      if s[i] != s[j+1]:
        false
      else:
        true if any dp[i][k]
          for j < k ≤ (j + longestMatchRight[i][j+1])

      // We removed on the left
      if s[i-1] != s[j]:
        true if dp[i][j]
      else:
        true if any dp[k][j]
          for (i - longestMatchLeft[i-1][j]) ≤ k < i

Мы можем предварительно вычислить самое длинное совпадение для каждой начальной пары (i, j) в O(n^2) с повторением,

longest(i, j) -> 
  if s[i] == s[j]:
    return 1 + longest(i + 1, j + 1)
  else:
    return 0

Это позволит нам проверить соответствие подстроки, которая начинается с индексов i и j в O(1). (Нам нужны как правое, так и левое направление.)

Как получить логарифмический коэффициент

Мы можем придумать способ придумать структуру данных, которая позволила бы нам определить, если

any dp[i][k]
  for j < k ≤ (j + longestMatchRight[i][j+1])

(And similarly for the left side.)

в O(log n), учитывая, что мы уже видели эти значения.

Вот код C ++ с деревьями сегментов (для правого и левого запросов, поэтому O(n^2 * log n)), который включает генератор тестов Бананона. Для 5000 символов «а» он работал в 3,54 с, 420 МБ (https://ideone.com/EIrhnR). Чтобы уменьшить память, одно из деревьев сегментов реализовано в одной строке (мне все еще нужно исследовать, как сделать то же самое с левыми запросами, чтобы еще больше уменьшить память.)

#include <iostream>
#include <string>
#include <ctime>
#include <random>
#include <algorithm>    // std::min

using namespace std;

const int MAX_N = 5000;

int seg[2 * MAX_N];
int segsL[MAX_N][2 * MAX_N];
int m[MAX_N][MAX_N][2];
int dp[MAX_N][MAX_N];
int best;

// Adapted from https://codeforces.com/blog/entry/18051
void update(int n, int p, int value) { // set value at position p
  for (seg[p += n] = value; p > 1; p >>= 1)
    seg[p >> 1] = seg[p] + seg[p ^ 1];
}
// Adapted from https://codeforces.com/blog/entry/18051
int query(int n, int l, int r) { // sum on interval [l, r)
  int res = 0;
  for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
    if (l & 1) res += seg[l++];
    if (r & 1) res += seg[--r];
  }
  return res;
}
// Adapted from https://codeforces.com/blog/entry/18051
void updateL(int n, int i, int p, int value) { // set value at position p
  for (segsL[i][p += n] = value; p > 1; p >>= 1)
    segsL[i][p >> 1] = segsL[i][p] + segsL[i][p ^ 1];
}
// Adapted from https://codeforces.com/blog/entry/18051
int queryL(int n, int i, int l, int r) { // sum on interval [l, r)
  int res = 0;
  for (l += n, r += n; l < r; l >>= 1, r >>= 1) {
    if (l & 1) res += segsL[i][l++];
    if (r & 1) res += segsL[i][--r];
  }
  return res;
}

// Code by גלעד ברקן
void precalc(int n, string & s) {
  int i, j;
  for (i = 0; i < n; i++) {
    for (j = 0; j < n; j++) {
      // [longest match left, longest match right]
      m[i][j][0] = (s[i] == s[j]) & 1;
      m[i][j][1] = (s[i] == s[j]) & 1;
    }
  }

  for (i = n - 2; i >= 0; i--)
    for (j = n - 2; j >= 0; j--)
      m[i][j][1] = s[i] == s[j] ? 1 + m[i + 1][j + 1][1] : 0;

  for (i = 1; i < n; i++)
    for (j = 1; j < n; j++)
      m[i][j][0] = s[i] == s[j] ? 1 + m[i - 1][j - 1][0] : 0;
}

// Code by גלעד ברקן
void f(int n, string & s) {
  int i, j, k, longest;

  dp[0][n - 1] = 1;
  update(n, n - 1, 1);
  updateL(n, n - 1, 0, 1);

  // Right side initialisation
  for (j = n - 2; j >= 0; j--) {
    if (s[0] == s[j + 1]) {
      longest = std::min(j + 1, m[0][j + 1][1]);
      for (k = j + 1; k <= j + longest; k++)
        dp[0][j] |= dp[0][k];
      if (dp[0][j]) {
        update(n, j, 1);
        updateL(n, j, 0, 1);
        best = std::min(best, j + 1);
      }
    }
  }

  // Left side initialisation
  for (i = 1; i < n; i++) {
    if (s[i - 1] == s[n - 1]) {
      // We are bound by the current range
      longest = std::min(n - i, m[i - 1][n - 1][0]);
      for (k = i - 1; k >= i - longest; k--)
        dp[i][n - 1] |= dp[k][n - 1];
      if (dp[i][n - 1]) {
        updateL(n, n - 1, i, 1);
        best = std::min(best, n - i);
      }
    }
  }

  for (i = 1; i <= n - 2; i++) {
    for (int ii = 0; ii < MAX_N; ii++) {
      seg[ii * 2] = 0;
      seg[ii * 2 + 1] = 0;
    }
    update(n, n - 1, dp[i][n - 1]);
    for (j = n - 2; j >= i; j--) {
      // We removed on the right
      if (s[i] == s[j + 1]) {
        // We are bound by half the current range
        longest = std::min(j - i + 1, m[i][j + 1][1]);
        //for (k=j+1; k<=j+longest; k++)
        //dp[i][j] |= dp[i][k];
        if (query(n, j + 1, j + longest + 1)) {
          dp[i][j] = 1;
          update(n, j, 1);
          updateL(n, j, i, 1);
        }
      }
      // We removed on the left
      if (s[i - 1] == s[j]) {
        // We are bound by half the current range
        longest = std::min(j - i + 1, m[i - 1][j][0]);
        //for (k=i-1; k>=i-longest; k--)
        //dp[i][j] |= dp[k][j];
        if (queryL(n, j, i - longest, i)) {
          dp[i][j] = 1;
          updateL(n, j, i, 1);
          update(n, j, 1);
        }
      }
      if (dp[i][j])
        best = std::min(best, j - i + 1);
    }
  }
}

int so(string s) {
  for (int i = 0; i < MAX_N; i++) {
    seg[i * 2] = 0;
    seg[i * 2 + 1] = 0;
    for (int j = 0; j < MAX_N; j++) {
      segsL[i][j * 2] = 0;
      segsL[i][j * 2 + 1] = 0;
      m[i][j][0] = 0;
      m[i][j][1] = 0;
      dp[i][j] = 0;
    }
  }
  int n = s.length();
  best = n;
  precalc(n, s);
  f(n, s);
  return best;
}
// End code by גלעד ברקן

// Code by Bananon  =======================================================================

int result;

int lps[MAX_N][MAX_N];
bool checked[MAX_N][MAX_N];

void check(int start, int length) {
  checked[start][length] = true;
  if (length < result) {
    result = length;
  }
  for (int i = lps[start][length]; i != 0; i = lps[start][i - 1]) {
    int newLength = length - i;
    if (!checked[start][newLength])
      check(start, newLength);
    int newStart = start + i;
    if (!checked[newStart][newLength])
      check(newStart, newLength);
  }
}

int my(string str) {
  int n = str.length();
  for (int l = 0; l < n; l++) {
    int subLength = n - l;
    lps[l][0] = 0;
    checked[l][0] = false;
    for (int i = 1; i < subLength; ++i) {
      int j = lps[l][i - 1];
      while (j > 0 && str[i + l] != str[j + l])
        j = lps[l][j - 1];
      if (str[i + l] == str[j + l]) j++;
      lps[l][i] = j;
      checked[l][i] = false;
    }
  }
  result = n - 1;
  check(0, n - 1);
  return result + 1;
}

// generate =================================================================

bool rndBool() {
  return rand() % 2 == 0;
}

int rnd(int bound) {
  return rand() % bound;
}

void untrim(string & str) {
  int length = rnd(str.length());
  int prefixLength = rnd(str.length()) + 1;
  if (rndBool())
    str.append(str.substr(0, prefixLength));
  else {
    string newStr = str.substr(str.length() - prefixLength, prefixLength);
    newStr.append(str);
    str = newStr;
  }
}

void rndTest(int minTestLength, string s) {
  while (s.length() < minTestLength)
    untrim(s);
  int myAns = my(s);
  int soAns = so(s);
  cout << myAns << " " << soAns << '\n';
  if (soAns != myAns) {
    cout << s;
    exit(0);
  }
}

int main() {
  int minTestLength;
  cin >> minTestLength;
  string seed;
  cin >> seed;
  while (true)
    rndTest(minTestLength, seed);
}

А вот JavaScript код (без улучшения коэффициента логарифмирования), чтобы показать, что повторение работает. (Чтобы получить коэффициент записи, мы заменим внутренние циклы k одним запросом диапазона.)

debug = 1

function precalc(s){
  let m = new Array(s.length)
  for (let i=0; i<s.length; i++){
    m[i] = new Array(s.length)
    for (let j=0; j<s.length; j++){
      // [longest match left, longest match right]
      m[i][j] = [(s[i] == s[j]) & 1, (s[i] == s[j]) & 1]
    }
  }
  
  for (let i=s.length-2; i>=0; i--)
    for (let j=s.length-2; j>=0; j--)
      m[i][j][1] = s[i] == s[j] ? 1 + m[i+1][j+1][1] : 0

  for (let i=1; i<s.length; i++)
    for (let j=1; j<s.length; j++)
      m[i][j][0] = s[i] == s[j] ? 1 + m[i-1][j-1][0] : 0
  
  return m
}

function f(s){
  m = precalc(s)
  let n = s.length
  let min = s.length
  let dp = new Array(s.length)

  for (let i=0; i<s.length; i++)
    dp[i] = new Array(s.length).fill(0)

  dp[0][s.length-1] = 1
      
  // Right side initialisation
  for (let j=s.length-2; j>=0; j--){
    if (s[0] == s[j+1]){
      let longest = Math.min(j + 1, m[0][j+1][1])
      for (let k=j+1; k<=j+longest; k++)
        dp[0][j] |= dp[0][k]
      if (dp[0][j])
        min = Math.min(min, j + 1)
    }
  }

  // Left side initialisation
  for (let i=1; i<s.length; i++){
    if (s[i-1] == s[s.length-1]){
      let longest = Math.min(s.length - i, m[i-1][s.length-1][0])
      for (let k=i-1; k>=i-longest; k--)
        dp[i][s.length-1] |= dp[k][s.length-1]
      if (dp[i][s.length-1])
        min = Math.min(min, s.length - i)
    }
  }

  for (let i=1; i<=s.length-2; i++){
    for (let j=s.length-2; j>=i; j--){
      // We removed on the right
      if (s[i] == s[j+1]){
        // We are bound by half the current range
        let longest = Math.min(j - i + 1, m[i][j+1][1])
        for (let k=j+1; k<=j+longest; k++)
          dp[i][j] |= dp[i][k]
      }
      // We removed on the left
      if (s[i-1] == s[j]){
        // We are bound by half the current range
        let longest = Math.min(j - i + 1, m[i-1][j][0])
        for (let k=i-1; k>=i-longest; k--)
          dp[i][j] |= dp[k][j]
      }
      if (dp[i][j])
        min = Math.min(min, j - i + 1)
    }
  }

  if (debug){
    let str = ""
    for (let row of dp)
      str += row + "\n"
    console.log(str)
  }

  return min
}

function main(s){
  var strs = [
    "caaca",
    "bbabbbba",
    "baabbabaa",
    "bbabbba",
    "bbbabbbbba",
    "abbabaabbab",
    "abbabaabbaba",
    "aabaabaaabaab",
    "bbabbabbb"
  ]

  for (let s of strs){
    let t = new Date
    console.log(s)
    console.log(f(s))
    //console.log((new Date - t)/1000)
    console.log("")
  }
}

main()
...