Google Colab зависает в моем браузере и p c при попытке подключиться к ноутбуку - PullRequest
0 голосов
/ 16 апреля 2020

Я тренирую модель машинного обучения в google colab, если быть более точным c Я тренирую GAN с PyTorch-lightning. Проблема возникает, когда я отключаюсь от своего текущего времени выполнения из-за неактивности. Когда я пытаюсь переподключить мой браузер (при попытке на firefox и chrome) сначала происходит задержка, а затем зависает, мой p c начинает отставать, так что я не могу закрыть свой браузер, и он не go прочь. Я вынужден нажать кнопку питания моего P C, чтобы перезапустить P C. Я понятия не имею, почему это происходит. Я пробовал разные размеры партии (также размер 1), но это все же происходит. Не может быть, чтобы и мой набор данных был слишком большим (так как я попробовал его на наборе данных с 10изображениями для проверки целей). Я надеюсь, что кто-то может мне помочь.

Вот мой код (для использования кода вам понадобится comet.nl и введите ключ API comet.ml):

import torch
import torch.nn as nn
import torch.nn.functional as F
import torchvision  
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST

from pytorch_lightning.callbacks import ModelCheckpoint
import pytorch_lightning as pl
from pytorch_lightning import loggers

import numpy as np
from numpy.random import choice

from PIL import Image

import os
from pathlib import Path
import shutil

from collections import OrderedDict

# custom weights initialization called on netG and netD
def weights_init(m):
    classname = m.__class__.__name__
    if classname.find('Conv') != -1:
        nn.init.normal_(m.weight.data, 0.0, 0.02)
    elif classname.find('BatchNorm') != -1:
        nn.init.normal_(m.weight.data, 1.0, 0.02)
        nn.init.constant_(m.bias.data, 0)

# randomly flip some labels
def noisy_labels(y, p_flip=0.05):  # # flip labels with 5% probability
    # determine the number of labels to flip
    n_select = int(p_flip * y.shape[0])
    # choose labels to flip
    flip_ix = choice([i for i in range(y.shape[0])], size=n_select)
    # invert the labels in place
    y[flip_ix] = 1 - y[flip_ix]
    return y

class AddGaussianNoise(object):
    def __init__(self, mean=0.0, std=0.1):
        self.std = std
        self.mean = mean

    def __call__(self, tensor):
        return tensor + torch.randn(tensor.size()) * self.std + self.mean

    def __repr__(self):
        return self.__class__.__name__ + '(mean={0}, std={1})'.format(self.mean, self.std)

def get_valid_labels(img):
  return (0.8 - 1.1) * torch.rand(img.shape[0], 1, 1, 1) + 1.1  # soft labels

def get_unvalid_labels(img):
  return noisy_labels((0.0 - 0.3) * torch.rand(img.shape[0], 1, 1, 1) + 0.3)  # soft labels

class Generator(nn.Module):
    def __init__(self, ngf, nc, latent_dim):
        super(Generator, self).__init__()
        self.ngf = ngf
        self.latent_dim = latent_dim
        self.nc = nc

        self.main = nn.Sequential(
            # input is Z, going into a convolution
            nn.ConvTranspose2d(latent_dim, ngf * 8, 4, 1, 0, bias=False),
            nn.BatchNorm2d(ngf * 8),
             nn.LeakyReLU(0.2, inplace=True),
            # state size. (ngf*8) x 4 x 4
            nn.ConvTranspose2d(ngf * 8, ngf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ngf*4) x 8 x 8
            nn.ConvTranspose2d( ngf * 4, ngf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ngf*2) x 16 x 16
            nn.ConvTranspose2d(ngf * 2, ngf, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ngf),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ngf) x 32 x 32
            nn.ConvTranspose2d(ngf, nc, 4, 2, 1, bias=False),
            nn.Tanh()
            # state size. (nc) x 64 x 64
        )

    def forward(self, input):
        return self.main(input)

class Discriminator(nn.Module):
    def __init__(self, ndf, nc):
        super(Discriminator, self).__init__()
        self.nc = nc
        self.ndf = ndf

        self.main = nn.Sequential(
            # input is (nc) x 64 x 64
            nn.Conv2d(nc, ndf, 4, 2, 1, bias=False),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf) x 32 x 32
            nn.Conv2d(ndf, ndf * 2, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 2),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*2) x 16 x 16
            nn.Conv2d(ndf * 2, ndf * 4, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 4),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*4) x 8 x 8
            nn.Conv2d(ndf * 4, ndf * 8, 4, 2, 1, bias=False),
            nn.BatchNorm2d(ndf * 8),
            nn.LeakyReLU(0.2, inplace=True),
            # state size. (ndf*8) x 4 x 4
            nn.Conv2d(ndf * 8, 1, 4, 1, 0, bias=False),
            nn.Sigmoid()
        )

    def forward(self, input):
        return self.main(input)

class DCGAN(pl.LightningModule):

    def __init__(self, hparams, logger, checkpoint_folder, experiment_name):
        super().__init__()
        self.hparams = hparams
        self.logger = logger  # only compatible with comet_logger at the moment
        self.checkpoint_folder = checkpoint_folder
        self.experiment_name = experiment_name

        # networks
        self.generator = Generator(ngf=hparams.ngf, nc=hparams.nc, latent_dim=hparams.latent_dim)
        self.discriminator = Discriminator(ndf=hparams.ndf, nc=hparams.nc)
        self.generator.apply(weights_init)
        self.discriminator.apply(weights_init)

        # cache for generated images
        self.generated_imgs = None
        self.last_imgs = None

        # For experience replay
        self.exp_replay_dis = torch.tensor([])

        # creating checkpoint folder
        dirpath = Path(self.checkpoint_folder)
        if not dirpath.exists():
          os.makedirs(dirpath, 0o755)

    def forward(self, z):
        return self.generator(z)

    def adversarial_loss(self, y_hat, y):
        return F.binary_cross_entropy(y_hat, y)

    def training_step(self, batch, batch_nb, optimizer_idx):
        # For adding Instance noise for more visit: https://www.inference.vc/instance-noise-a-trick-for-stabilising-gan-training/
        std_gaussian = max(0, self.hparams.level_of_noise - ((self.hparams.level_of_noise * 1.5) * (self.current_epoch / self.hparams.epochs)))
        AddGaussianNoiseInst = AddGaussianNoise(std=std_gaussian) # the noise decays over time

        imgs, _ = batch
        imgs = AddGaussianNoiseInst(imgs) # Adding instance noise to real images
        self.last_imgs = imgs

        # train generator
        if optimizer_idx == 0:
            # sample noise
            z = torch.randn(imgs.shape[0], self.hparams.latent_dim, 1, 1)

            # generate images
            self.generated_imgs = self(z)
            self.generated_imgs = AddGaussianNoiseInst(self.generated_imgs) # Adding instance noise to fake images

            # Experience replay
            # for discriminator
            perm = torch.randperm(self.generated_imgs.size(0))  # Shuffeling
            r_idx = perm[:max(1, self.hparams.experience_save_per_batch)]  # Getting the index
            self.exp_replay_dis = torch.cat((self.exp_replay_dis, self.generated_imgs[r_idx]), 0).detach()  # Add our new example to the replay buffer

            # ground truth result (ie: all fake)
            g_loss = self.adversarial_loss(self.discriminator(self.generated_imgs), get_valid_labels(self.generated_imgs)) # adversarial loss is binary cross-entropy

            tqdm_dict = {'g_loss': g_loss}
            log = {'g_loss': g_loss, "std_gaussian": std_gaussian}
            output = OrderedDict({
                'loss': g_loss,
                'progress_bar': tqdm_dict,
                'log': log
            })
            return output

        # train discriminator
        if optimizer_idx == 1:
            # Measure discriminator's ability to classify real from generated samples
            # how well can it label as real?
            real_loss = self.adversarial_loss(self.discriminator(imgs), get_valid_labels(imgs))

            # Experience replay
            if self.exp_replay_dis.size(0) >= self.hparams.experience_batch_size:
              fake_loss = self.adversarial_loss(self.discriminator(self.exp_replay_dis.detach()), get_unvalid_labels(self.exp_replay_dis))  # train on already seen images

              self.exp_replay_dis = torch.tensor([]) # Reset experience replay

              # discriminator loss is the average of these
              d_loss = (real_loss + fake_loss) / 2

              tqdm_dict = {'d_loss': d_loss}
              log = {'d_loss': d_loss, "d_exp_loss": fake_loss, "std_gaussian": std_gaussian}
              output = OrderedDict({
                  'loss': d_loss,
                  'progress_bar': tqdm_dict,
                  'log': log
              })
              return output

            else:
              fake_loss = self.adversarial_loss(self.discriminator(self.generated_imgs.detach()), get_unvalid_labels(self.generated_imgs))  # how well can it label as fake?

              # discriminator loss is the average of these
              d_loss = (real_loss + fake_loss) / 2

              tqdm_dict = {'d_loss': d_loss}
              log = {'d_loss': d_loss, "std_gaussian": std_gaussian}
              output = OrderedDict({
                  'loss': d_loss,
                  'progress_bar': tqdm_dict,
                  'log': log
              })
              return output

    def configure_optimizers(self):
        lr = self.hparams.lr
        b1 = self.hparams.b1
        b2 = self.hparams.b2

        opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
        opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
        return [opt_g, opt_d], []

    def train_dataloader(self):
        transform = transforms.Compose([transforms.Resize((self.hparams.image_size, self.hparams.image_size)),
                                        transforms.ToTensor(),
                                        transforms.Normalize([0.5], [0.5])])
        dataset = MNIST(os.getcwd(), train=True, download=True, transform=transform)
        return DataLoader(dataset, batch_size=self.hparams.batch_size)
        # transform = transforms.Compose([transforms.Resize((self.hparams.image_size, self.hparams.image_size)),
        #                                 transforms.ToTensor(),
        #                                 transforms.Normalize([0.5], [0.5])
        #                                 ])

        # train_dataset = torchvision.datasets.ImageFolder(
        #     root="./drive/My Drive/datasets/ghibli_dataset_small_overfit/",
        #     transform=transform
        # )
        # return DataLoader(train_dataset, num_workers=self.hparams.num_workers, shuffle=True, batch_size=self.hparams.batch_size)

    def on_epoch_end(self):
        z = torch.randn(4, self.hparams.latent_dim, 1, 1)
        # match gpu device (or keep as cpu)
        if self.on_gpu:
            z = z.cuda(self.last_imgs.device.index)

        # log sampled images
        sample_imgs = self.generator(z)
        sample_imgs = sample_imgs.view(-1, self.hparams.nc, self.hparams.image_size, self.hparams.image_size)
        grid = torchvision.utils.make_grid(sample_imgs, nrow=2)
        self.logger.experiment.log_image(grid.permute(1, 2, 0), f'generated_images_epoch{self.current_epoch}', step=self.current_epoch)

        # save model
        if self.current_epoch % self.hparams.save_model_every_epoch == 0:
          trainer.save_checkpoint(self.checkpoint_folder + "/" + self.experiment_name + "_epoch_" + str(self.current_epoch) + ".ckpt")
          comet_logger.experiment.log_asset_folder(self.checkpoint_folder, step=self.current_epoch)

          # Deleting the folder where we saved the model so that we dont upload a thing twice
          dirpath = Path(self.checkpoint_folder)
          if dirpath.exists() and dirpath.is_dir():
                shutil.rmtree(dirpath)

          # creating checkpoint folder
          access_rights = 0o755
          os.makedirs(dirpath, access_rights)

from argparse import Namespace

args = {
    'batch_size': 48,
    'lr': 0.0002,
    'b1': 0.5,
    'b2': 0.999,
    'latent_dim': 128, # tested value which worked(in V4_1): 100
    'nc': 1,
    'ndf': 32,
    'ngf': 32,
    'epochs': 10,
    'save_model_every_epoch': 5,
    'image_size': 64,
    'num_workers': 2,
    'level_of_noise': 0.15,
    'experience_save_per_batch': 1, # this value should be very low; tested value which works: 1
    'experience_batch_size': 50 # this value shouldnt be too high; tested value which works: 50
}
hparams = Namespace(**args)

# Parameters
experiment_name = "DCGAN_V4_2_MNIST"
dataset_name = "MNIST"
checkpoint_folder = "DCGAN/"
tags = ["DCGAN", "MNIST", "OVERFIT", "64x64"]
dirpath = Path(checkpoint_folder)

# init logger
comet_logger = loggers.CometLogger(
    api_key="",
    rest_api_key="",
    project_name="gan",
    experiment_name=experiment_name,
    #experiment_key="f23d00c0fe3448ee884bfbe3fc3923fd"  # used for resuming trained id can be found in comet.ml
)

#defining net
net = DCGAN(hparams, comet_logger, checkpoint_folder, experiment_name)

#logging
comet_logger.experiment.set_model_graph(str(net))
comet_logger.experiment.add_tags(tags=tags)
comet_logger.experiment.log_dataset_info(dataset_name)

trainer = pl.Trainer(#resume_from_checkpoint="GHIBLI_DCGAN_OVERFIT_64px_epoch_6000.ckpt",
                     logger=comet_logger,
                     max_epochs=args["epochs"]
                     )
trainer.fit(net)
comet_logger.experiment.end()

1 Ответ

0 голосов
/ 16 апреля 2020

Я исправил это с помощью импорта:

from IPython.display import clear_output 
...