У меня есть следующий фрейм данных:
df = pd.DataFrame({'Day' : ['15', '15', '15', '16', '16', '17', '17', '17', '17'],
'Month' : ['10', '10', '10', '10', '10', '10', '10', '10', '10'],
'Year' : ['2019', '2019', '2019', '2019', '2019', '2019', '2019', '2019',
'2019'],
'Hour' : ['14', '14', '14', '14', '14', '14', '15', '15', '15'],
'Minute' : ['33', '41', '45', '46', '58', '59', '01', '02', '03' ],
'Second' : ['16', '17', '19', '19', '20', '0', '0', '0', '0'],
'depth' : [40000, 39000, 13000, 40000, 39500, 35000, 34500, 35000, 34600]
})
Я использовал эту строку для создания нового столбца даты:
df['Date'] = pd.to_datetime(df[['Year', 'Month', 'Day', 'Hour', 'Minute', 'Second']])
Существует ограничение на разницу во времени и ограничение на разница между глубинами. Итак, я реализовал следующий код:
df['Status'] = np.NaN
for i in range(0, len(df)):
for j in range(i+1, len(df)):
date_init = pd.to_datetime(df['Date'].iloc[i])
date_next = pd.to_datetime(df['Date'].iloc[j])
if(abs(date_init - date_next) < pd.to_timedelta('0 days 00:10:00')): # 10 minutes
#Calculate the depth variation
var_delta_sensor = abs(df['depth'].iloc[i] - df['depth'].iloc[j])
if(var_delta_sensor < 1500):
#The depth is valid let's accept
df['Status'].iloc[i] = 'ACCEPT'
df['Status'].iloc[j] = 'ACCEPT'
else:
#Entering here means that the depth is not valid
print("NOT depth")
else:
#The difference between element i and j is greater than 10 minutes
i = j
j = i + 1
Вывод соответствует приведенному ниже кадру данных. Это верно. Это именно тот вывод, который мне нужен, но я использую два FOR, это очень медленно. Мне нужно было работать на 20000 строк данных. Я хотел бы изучить новый, более быстрый способ достижения того же результата. Ткс
print(df)
Day Month Year Hour Minute Second depth Date Status
15 10 2019 14 33 16 40000 2019-10-15 14:33:16 ACCEPT
15 10 2019 14 41 17 39000 2019-10-15 14:41:17 ACCEPT
15 10 2019 14 45 19 13000 2019-10-15 14:45:19 NaN
16 10 2019 14 46 19 40000 2019-10-16 14:46:19 NaN
16 10 2019 14 58 20 39500 2019-10-16 14:58:20 NaN
17 10 2019 14 59 0 35000 2019-10-17 14:59:00 ACCEPT
17 10 2019 15 01 0 34500 2019-10-17 15:01:00 ACCEPT
17 10 2019 15 02 0 35000 2019-10-17 15:02:00 ACCEPT
17 10 2019 15 03 0 34600 2019-10-17 15:03:00 ACCEPT