параллельные вычисления используют Pets c in C - PullRequest
0 голосов
/ 25 марта 2020

Я изучаю, как использовать Pets c в C, я хочу решить линейную систему с KSP (найти x в Ax = b, A - матрица (nxn), b - вектор (n)) в Pets c. Библиотека предоставляет некоторые инструменты для параллельного вычисления в C. Тем не менее, у меня возникли проблемы и найти ответ, я надеюсь получить ваше объяснение.

Если я использую A с размером 5000x5000 (матрица A доминирует по диагонали), решение задачи без параллельного решения занимает больше времени. Я не понимаю вопроса. Можете ли вы дать мне объяснение, и как сделать что-то, чтобы работать быстрее?

Мой код, который находится в тесте. c представлен выше:

#include <petscksp.h>
#include <time.h>

int main(int argc,char **args)
{
  Vec            x, b, u;      /* approx solution, RHS, exact solution */
  Mat            A;            /* linear system matrix */
  KSP            ksp;          /* linear solver context */
  PC             pc;           /* preconditioner context */
  PetscReal      norm;         /* norm of solution error */
  PetscErrorCode ierr;
  PetscInt       i,n = 5000,col[5000],its , j,k;
  PetscMPIInt    size;
  PetscScalar    value[5000];
  PetscViewer    viewer;



  ierr = PetscInitialize(&argc,&args,(char*)0,help);if (ierr) return ierr;
  ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
  if (size != 1) SETERRQ(PETSC_COMM_WORLD,1,"This is a uniprocessor example only!");
  ierr = PetscOptionsGetInt(NULL,NULL,"-n",&n,NULL);CHKERRQ(ierr);


  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
         Compute the matrix and right-hand-side vector that define
         the linear system, Ax = b.
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */

  /*
     Create vectors.  Note that we form 1 vector from scratch and
     then duplicate as needed.
  */
  ierr = VecCreate(PETSC_COMM_WORLD,&x);CHKERRQ(ierr);
  ierr = PetscObjectSetName((PetscObject) x, "Solution");CHKERRQ(ierr);
  ierr = VecSetSizes(x,PETSC_DECIDE,n);CHKERRQ(ierr);
  ierr = VecSetFromOptions(x);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&b);CHKERRQ(ierr);
  ierr = VecDuplicate(x,&u);CHKERRQ(ierr);

  /*
     Create matrix.  When using MatCreate(), the matrix format can
     be specified at runtime.

     Performance tuning note:  For problems of substantial size,
     preallocation of matrix memory is crucial for attaining good
     performance. See the matrix chapter of the users manual for details.
  */
  ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
  ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,n,n);CHKERRQ(ierr);
  ierr = MatSetFromOptions(A);CHKERRQ(ierr);
  ierr = MatSetUp(A);CHKERRQ(ierr);

  /*
     Assemble matrix
  */

/*value[0] = -1.0; value[1] = 1000.0; value[2] = -1.0;
  for (i=1; i<n-1; i++) {
    col[0] = i-1; col[1] = i; col[2] = i+1;
    ierr   = MatSetValues(A,1,&i,3,col,value,INSERT_VALUES);CHKERRQ(ierr);
  }
  i    = n - 1; col[0] = n - 2; col[1] = n - 1; value[1] = 1000.0; value[0] = -1.0;
  ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);
  i    = 0; col[0] = 0; col[1] = 1; value[0] = 1000.0; value[1] = -1.0;
  ierr = MatSetValues(A,1,&i,2,col,value,INSERT_VALUES);CHKERRQ(ierr);*/

  for (i =0; i<n; i++){
    for (j=0; j<n;j++){

       value[j]= -2;
       if (j==i){
           value[j]= value[j] + 50000;
       }
    }
    for (k=0; k<n; k++){
       col[k]=k;
    }
    ierr = MatSetValues (A, 1, &i,n,col,value,INSERT_VALUES);CHKERRQ(ierr);
  }


  ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
  /* view matrix A*/
  //MatView(A,PETSC_VIEWER_STDOUT_WORLD);

  /*
     Set exact solution; then compute right-hand-side vector.
  */
  ierr = VecSet(u,1.0);CHKERRQ(ierr);
  ierr = MatMult(A,u,b);CHKERRQ(ierr);

  clock_t start, end;
  double cpu_time_used;
  start = clock();

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                Create the linear solver and set various options
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);

  /*
     Set operators. Here the matrix that defines the linear system
     also serves as the matrix that defines the preconditioner.
  */
  ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);

  /*
     Set linear solver defaults for this problem (optional).
     - By extracting the KSP and PC contexts from the KSP context,
       we can then directly call any KSP and PC routines to set
       various options.
     - The following four statements are optional; all of these
       parameters could alternatively be specified at runtime via
       KSPSetFromOptions();
  */
  ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
  ierr = PCSetType(pc,PCJACOBI);CHKERRQ(ierr);
  ierr = KSPSetTolerances(ksp,1.e-5,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);

  /*
    Set runtime options, e.g.,
        -ksp_type <type> -pc_type <type> -ksp_monitor -ksp_rtol <rtol>
    These options will override those specified above as long as
    KSPSetFromOptions() is called _after_ any other customization
    routines.
  */
  ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Solve the linear system
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);

  end = clock();
  cpu_time_used = ((double) (end - start)) / CLOCKS_PER_SEC;
  printf("take time: %lf \n",cpu_time_used );

  /* view solution */
  //ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);


  /*
     View solver info; we could instead use the option -ksp_view to
     print this info to the screen at the conclusion of KSPSolve().
  */
  //ierr = KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);

  /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                      Check the solution and clean up
     - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
  ierr = VecAXPY(x,-1.0,u);CHKERRQ(ierr);
  ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
  ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
  ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %g, Iterations %D\n",(double)norm,its);CHKERRQ(ierr);

  /*
     Free work space.  All PETSc objects should be destroyed when they
     are no longer needed.
  */
  ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr);
  ierr = VecDestroy(&b);CHKERRQ(ierr); ierr = MatDestroy(&A);CHKERRQ(ierr);
  ierr = KSPDestroy(&ksp);CHKERRQ(ierr);




  /*
     Always call PetscFinalize() before exiting a program.  This routine
       - finalizes the PETSc libraries as well as MPI
       - provides summary and diagnostic information if certain runtime
         options are chosen (e.g., -log_view).
  */
  ierr = PetscFinalize();


  return ierr;
}

Я запускаю программу с командой :

make test
mpirun -np 4 test
...