Я занимаюсь разработкой системы распознавания лиц и для этого выбрал алгоритм LBPH для выполнения задачи. Я собрал образцы изображений пользователя и обучил его. Проблема заключается в том, что при распознавании лица предикат () LBPHRecognizer всегда возвращает одно и то же значение для метки, но другое значение для достоверности. Даже если лицо неизвестно, оно возвращает 1.
Технологии, которые я использовал: Python 3.7.4, OpenCV 4.1.2
Код для сбора образца изображения
import cv2
import numpy as np
import os
import requests
import time
from PIL import Image
class CollectFaceWebCam():
def __init__(self, sid):
self.studentId = sid
#capture webcam
self.LiveWebCamera = cv2.VideoCapture(0)
#pre-trained dataset (haar-cascade classifier)
self.faceDataSet = cv2.CascadeClassifier('resources/haarcascade_frontalface_default.xml')
#sample image capture counter
self.imgCounter = 0
self.directoryName = 'sampleImgFolder'
#check path
if not os.path.exists(self.directoryName):
os.makedirs(self.directoryName)
if not os.path.exists(self.directoryName + '/' + self.studentId):
os.makedirs(self.directoryName + '/' + self.studentId)
def gen(self):
while True:
condition, frame = self.LiveWebCamera.read() #capture frame
img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#conversion to gray scale
#face detection
faces = self.faceDataSet.detectMultiScale( # Detect face sizes
img,
scaleFactor=1.3,
minNeighbors=5,
minSize=(100, 100),
flags=cv2.CASCADE_SCALE_IMAGE
)
for (x, y, w, h) in faces:
end_crd_x = x + w # face start coordinates
end_crd_y = y + h #face end coordinate
#draw rectangle
#@parms image, start plot, end plot, thickness, color
cv2.rectangle(frame, (x, y), (end_crd_x, end_crd_y), (0, 255, 33), 1)
#accepts multiple face
if len(faces) >= 0:
#face must be single in frame
if len(faces) == 1:
detectedImg = img[y:y + h, x:x + w]
#checking blurness of image
blurValue = cv2.Laplacian(detectedImg, cv2.CV_64F).var()
#ignoring the blury images
if not blurValue <= 60:
newImg = img[y:y + h, x:x + w] #new img
#saving the detected faces
filename = '{}\{}\{}\{}_{}'.format(os.getcwd(), self.directoryName, self.studentId, self.studentId, self.imgCounter) + '.jpg'
cv2.imwrite(filename, newImg)
self.imgCounter += 1
else:
cv2.putText(frame,"Multiple Face not allowed", (50,150), cv2.FONT_HERSHEY_SIMPLEX, 1, (237, 20, 5), thickness=2)
cv2.putText(frame,"Collecting Sample", (50,100), cv2.FONT_HERSHEY_SIMPLEX, 1, (250, 250, 250), thickness=3)
cv2.putText(frame,"Image Count " + str(self.imgCounter), (50,200), cv2.FONT_HERSHEY_SIMPLEX, 2, (237, 20, 5), thickness=2)
cv2.imshow('Collecting Sample', frame) # display frames
k = cv2.waitKey(100) & 0xff # capture when user press 'esc'
if k == 27:
break
elif self.imgCounter == 110:
break
self.LiveWebCamera.release() #stop video capture
cv2.destroyAllWindows() #close all windows
class CleanSampleImages():
def __init__(self):
self.faceDataset = cv2.CascadeClassifier('resources/haarcascade_frontalface_default.xml')
self.eyeDataset = cv2.CascadeClassifier('resources/haarcascade_eye.xml')
self.targetFolder = 'sampleImgFolder'
def checkFace(self):
os.chdir(self.targetFolder)
for directory in os.listdir():
os.chdir(directory)
for files in os.listdir():
imagePath = '{}/{}'.format(os.getcwd(), files)
imagePil = Image.open(imagePath).convert('L')
imageNumpy = np.array(imagePil) #conversion of normal image to numpy array
#detect face
faces = self.faceDataset.detectMultiScale(imageNumpy)
#deleting image file if face is not found
if not len(faces) == 1:
os.remove(files)
break
for (x, y, w, h) in faces:
#detect eye from selected
eyes = self.eyeDataset.detectMultiScale(imageNumpy)
if not len(eyes) > 0 and len(eyes) <=2:
#deleting image file if eye count of image is less than 0 or more than 2
os.remove(files)
os.chdir('../')
os.chdir('../')
#id must be in X-X-ID eg. a-b-342
t = CollectFaceWebCam('sa-t-1')
t.gen()
clean = CleanSampleImages
c.checkFace()
Выше код состоит из двух классов CollectFaceWebCam и CleanSampleImages. CollectFaceWebCam работает для сбора образцов изображений. и CleanSampleImages работает для очистки собранных данных. если изображение не состоит из лица, файл удаляется.
Код для обучения изображениям
import os
import cv2
import numpy as np
from PIL import Image
class Trainer():
def __init__(self):
self.recognizer = cv2.face.LBPHFaceRecognizer_create()
self.targetImagesDirectory="sampleImgFolder"
self.dataset = cv2.CascadeClassifier('resources/haarcascade_frontalface_default.xml')
def getImgwithId(self):
sampleImage, sampleImageId = [], []
filename = '{}\\{}'.format(os.getcwd(), self.targetImagesDirectory)
if os.path.exists(filename):
os.chdir(filename)
print('current path is ' + os.getcwd())
for f in os.listdir():
imgPath = os.path.join(filename, f)
os.chdir(imgPath)
for file in os.listdir():
#reteving id from filename (filename format : ta-s-ID_Filename.jpg)
id = file.split('_')
id = id[0].split('-')
id = id[2]
imageFilePath = imgPath + '\\' + file
imagePil = Image.open(imageFilePath).convert('L')
#conversion to numpy array
imageNp = np.array(imagePil, 'uint8')
faces = self.dataset.detectMultiScale(imageNp)
for (x, y, w, h) in faces:
sampleImage.append(imageNp)
sampleImageId.append(id)
os.chdir('../')
os.chdir('../')
return sampleImage, np.array(sampleImageId, dtype = int)
def train(self, data, label):
try:
self.recognizer.train(data, label)
self.msg = 'Training Successful'
print('writting')
self.recognizer.write('date.yml')
print('writing finished')
except:
self.msg = 'Core: Training Error'
print('except')
tr = Trainer()
sampleFaces, sampleFaceId = (tr.getImgwithId())
tr.train(sampleFaces, sampleFaceId)
Код для распознавания лица
import os
import cv2
import numpy as np
from PIL import Image
class Recognizer():
def __init__(self):
self.recognizer = cv2.face.LBPHFaceRecognizer_create()
self.recognizer.read('date.yml')
self.targetImagesDirectory="sampleImgFolder"
self.dataset = cv2.CascadeClassifier('resources/haarcascade_frontalface_default.xml')
self.captureVideo = cv2.VideoCapture(0)
self.font = cv2.FONT_HERSHEY_SIMPLEX = 2 # Font
self.predictedUser = []
def gen(self):
while True:
condition, frame = self.captureVideo.read() #capture frame
img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)#conversion to gray scale
#face detection
faces = self.dataset.detectMultiScale( # Detect face sizes
img,
scaleFactor=1.3,
minNeighbors=5,
minSize=(100, 100),
flags=cv2.CASCADE_SCALE_IMAGE
)
for (x, y, w, h) in faces:
end_crd_x = x + w # face start coordinates
end_crd_y = y + h #face end coordinate
#draw rectangle
#@parms image, start plot, end plot, thickness, color
cv2.rectangle(frame, (x, y), (end_crd_x, end_crd_y), (0, 255, 33), 1)
predictUser, confidence = self.recognizer.predict(img[y:y+h,x:x+w])
self.predictedUser.append(predictUser)
cv2.imshow('test', frame)
k = cv2.waitKey(100) & 0xff # capture when user press 'esc'
if k == 27:
break
self.captureVideo.release()
cv2.destroyAllWindows()
r = Recognizer()
r.gen()
print(r.predictedUser)
"вестищий прогноз, доверие = self.recognizer.predict (img [y: y + h, x: x + w]) " строка кода в классе Recognizer всегда возвращает одно и то же значение для метки. Вывод кода для распознавания лица прилагается ниже:
Я хотел бы знать, почему и где проблема, так как мои навыки и исследования не могли привести меня к идентификации проблема.