Я пробую программирование cuda на colab.Я пробовал с базовыми c цифрами c операциями с массивами на ядре cuda. Для запуска cuda на colab я могу увидеть множество примеров на net.
!apt update -qq;
!wget https://developer.nvidia.com/compute/cuda/8.0/Prod2/local_installers/cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64-deb;
!dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64-deb;
!apt-key add /var/cuda-repo-8-0-local-ga2/7fa2af80.pub;
!apt-get update -qq;
!apt-get install cuda gcc-5 g++-5 -y -qq;
!ln -s /usr/bin/gcc-5 /usr/local/cuda/bin/gcc;
!ln -s /usr/bin/g++-5 /usr/local/cuda/bin/g++;
!apt install cuda-8.0;
!/usr/local/cuda/bin/nvcc --version
!pip install git+git://github.com/andreinechaev/nvcc4jupyter.git
%load_ext nvcc_plugin
%%cu
#include <stdio.h>
#define N 64
inline cudaError_t checkCudaErr(cudaError_t err, const char* msg) {
if (err != cudaSuccess) {
fprintf(stderr, "CUDA Runtime error at %s: %s\n", msg, cudaGetErrorString(err));
}
return err;
}
__global__ void matrixMulGPU( int * a, int * b, int * c )
{
/*
* Build out this kernel.
*/
int row = threadIdx.y + blockIdx.y * blockDim.y;
int col = threadIdx.x + blockIdx.x * blockDim.x;
int val = 0;
if (row < N && col < N) {
for (int i = 0; i < N; ++i) {
val += a[row * N + i] * b[i * N + col];
}
c[row * N + col] = val;
}
}
/*
* This CPU function already works, and will run to create a solution matrix
* against which to verify your work building out the matrixMulGPU kernel.
*/
void matrixMulCPU( int * a, int * b, int * c )
{
int val = 0;for( int row = 0; row < N; ++row )
for( int col = 0; col < N; ++col )
{
val = 0;
for ( int k = 0; k < N; ++k )
val += a[row * N + k] * b[k * N + col];
c[row * N + col] = val;
}
}
int main()
{
int *a, *b, *c_cpu, *c_gpu; // Allocate a solution matrix for both the CPU and the GPU operations
int size = N * N * sizeof (int); // Number of bytes of an N x N matrix// Allocate memory
cudaMallocManaged (&a, size);
cudaMallocManaged (&b, size);
cudaMallocManaged (&c_cpu, size);
cudaMallocManaged (&c_gpu, size);// Initialize memory; create 2D matrices
from google.colab import drive
drive.mount('/content/gdrive')
PATH_OF_DATA= '/content/gdrive/"My Drive"/sherry-christian-8Myh76_3M2U-unsplash'
for( int row = 0; row < N; ++row )
for( int col = 0; col < N; ++col )
{
a[row*N + col] = row;
b[row*N + col] = col+2;
c_cpu[row*N + col] = 0;
c_gpu[row*N + col] = 0;
}/*
* Assign `threads_per_block` and `number_of_blocks` 2D values
* that can be used in matrixMulGPU above.
*/dim3 threads_per_block(32, 32, 1);
dim3 number_of_blocks(N / threads_per_block.x + 1, N / threads_per_block.y + 1, 1);
printf("%d",number_of_blocks);
matrixMulGPU <<< number_of_blocks, threads_per_block >>> ( a, b, c_gpu );
checkCudaErr(cudaDeviceSynchronize(), "Syncronization");
checkCudaErr(cudaGetLastError(), "GPU");// Call the CPU version to check our work
matrixMulCPU( a, b, c_cpu );// Compare the two answers to make sure they are equal
bool error = false;
for( int row = 0; row < N && !error; ++row )
for( int col = 0; col < N && !error; ++col )
if (c_cpu[row * N + col] != c_gpu[row * N + col])
{
printf("FOUND ERROR at c[%d][%d]\n", row, col);
error = true;
break;
}
if (!error)
printf("Success!\n");// Free all our allocated memory
cudaFree(a); cudaFree(b);
cudaFree( c_cpu ); cudaFree( c_gpu );
}
Это пример кода.
from google.colab import drive
drive.mount('/content/gdrive')
PATH_OF_DATA= '/content/gdrive/"My Drive"/sherry-christian-8Myh76_3M2U-unsplash'
Я знаю, что эти строки неверны. использование python фрагмента в коде c ++. Я хочу вместо этого использовать фрагмент c ++.
Я хочу загрузить изображение в программу cuda c ++ и опробовать операции. Так есть ли способ загрузить изображение с диска на CUDA C ++ программу на Google Colab. Может кто-нибудь помочь мне с примером кода?