Я читаю и обрабатываю файл (используя один и тот же бит кода), который работает с двумя очень разными скоростями: 1. Сценарий (50K + итераций в секунду) и 2. Обернут в функцию (~ 300 итераций в секунду). Я действительно не могу понять, почему существуют такие огромные различия в потреблении времени на чтение.
Структура модуля (неиспользуемые и нерелевантные файлы опущены. Код в конце.):
| experiments/
|--| experiment_runner.py
|
| module/
|--| shared/
|--|--| dataloaders.py
|--|--| data.py
В data.py
у нас есть метод (load
, обтекание класса метод наследуется от torch.utils.data.Dataset
) фактической загрузки файла. В dataloaders.py
я подготавливаю аргументы для передачи load
, обернутые в функцию для каждого набора данных, который я использую. Затем он передается в функцию loader
, которая обрабатывает разбиение набора данных и т. Д.
В experiment_runner
, то есть, где происходят различия в скорости. Если я использую функции набора данных в dataloaders.py
, загрузка происходит со скоростью около 300 итераций в секунду. Если я скопирую код из функции и брошу его непосредственно в experiment_runner
, все еще используя функцию loader
из dataloaders.py
(то есть не обернутую в функцию для каждого набора данных), загрузка произойдет примерно с 50000 итераций / второй. Я в полной растерянности относительно того, почему обертывание кода в функцию может резко изменить его скорость.
Теперь актуальный код:
data.py:
def load(self, dataset: str = 'train', skip_header = True, **kwargs) -> None:
fp = open(self.data_files[dataset])
if skip_header:
next(fp)
data = []
for line in tqdm(self.reader(fp), desc = f'loading {self.name} ({dataset})'):
data_line, datapoint = {}, base.Datapoint()
for field in self.train_fields:
idx = field.index if self.ftype in ['CSV', 'TSV'] else field.cname
data_line[field.name] = self.process_doc(line[idx].rstrip())
data_line['original'] = line[idx].rstrip()
for field in self.label_fields:
idx = field.index if self.ftype in ['CSV', 'TSV'] else field.cname
if self.label_preprocessor:
data_line[field.name] = self.label_preprocessor(line[idx].rstrip())
else:
data_line[field.name] = line[idx].rstrip()
for key, val in data_line.items():
setattr(datapoint, key, val)
data.append(datapoint)
fp.close()
if self.length is None:
# Get the max length
lens = []
for doc in data:
for f in self.train_fields:
lens.append(len([tok for tok in getattr(doc, getattr(f, 'name'))]))
self.length = max(lens)
if dataset == 'train':
self.data = data
elif dataset == 'dev':
self.dev = data
elif dataset == 'test':
self.test = data
dataloaders.py:
def loader(args: dict, **kwargs):
"""Loads the dataset.
:args (dict): Dict containing arguments to load dataaset.
:returns: Loaded and splitted dataset.
"""
dataset = GeneralDataset(**args)
dataset.load('train', **kwargs)
if (args['dev'], args['test']) == (None, None): # Only train set is given.
dataset.split(dataset.data, [0.8, 0.1, 0.1], **kwargs)
elif args['dev'] is not None and args['test'] is None: # Dev set is given, test it not.
dataset.load('dev', **kwargs)
dataset.split(dataset.data, [0.8], **kwargs)
elif args['dev'] is None and args['test'] is not None: # Test is given, dev is not.
dataset.split(dataset.data, [0.8], **kwargs)
dataset.dev_set = dataset.test
dataset.load('test', **kwargs)
else: # Both dev and test sets are given.
dataset.load('dev', **kwargs)
dataset.load('test', **kwargs)
return dataset
def binarize(label: str) -> str:
if label in ['0', '1']:
return 'pos'
else:
return 'neg'
def datal(path: str, cleaners: base.Callable, preprocessor: base.Callable = None):
args = {'data_dir': path,
'ftype': 'csv',
'fields': None,
'train': 'dataset.csv', 'dev': None, 'test': None,
'train_labels': None, 'dev_labels': None, 'test_labels': None,
'sep': ',',
'tokenizer': lambda x: x.split(),
'preprocessor': preprocessor,
'transformations': None,
'length': None,
'label_preprocessor': binarize,
'name': 'First dataset.'
}
ignore = base.Field('ignore', train = False, label = False, ignore = True)
d_text = base.Field('text', train = True, label = False, ignore = False, ix = 6, cname = 'text')
d_label = base.Field('label', train = False, label = True, cname = 'label', ignore = False, ix = 5)
args['fields'] = [ignore, ignore, ignore, ignore, ignore, d_label, d_text]
return loader(args)
А для целей: эксперимент_runner. py
from module.dataloaders import datal, loader
dataset = datal() # Slow: 300-ish iterations/second
# Fast version: 50000 iter/second
def binarize(label: str) -> str:
if label in ['0', '1']:
return 'pos'
else:
return 'neg'
args = {'data_dir': path,
'ftype': 'csv',
'fields': None,
'train': 'dataset.csv', 'dev': None, 'test': None,
'train_labels': None, 'dev_labels': None, 'test_labels': None,
'sep': ',',
'tokenizer': lambda x: x.split(),
'preprocessor': preprocessor,
'transformations': None,
'length': None,
'label_preprocessor': binarize,
'name': 'First dataset.'
}
ignore = base.Field('ignore', train = False, label = False, ignore = True)
d_text = base.Field('text', train = True, label = False, ignore = False, ix = 6, cname = 'text')
d_label = base.Field('label', train = False, label = True, cname = 'label', ignore = False, ix = 5)
args['fields'] = [ignore, ignore, ignore, ignore, ignore, d_label, d_text]
dataset = loader(args)
В идеале я бы предпочел, чтобы функции набора данных (например, datal
) были обернуты, чтобы разделить логи c, но с таким уменьшением скорости это неосуществимо.