Мне нужно удалить строки, которые дублируются в одном столбце на основе дубликатов в другом столбце, используя sparklyr
.
Набор данных iris имеет ряд наблюдений, для которых 4 функции идентичны Значения Sepal.Width
, Petal.Length
, Petal.Width
и Species
похожи (строки различаются только для столбца Sepal.Length
).
Давайте создадим копию iris в spark
library(sparklyr)
sc <- spark_connect(master = "local", version = "2.3")
iris_spark <- copy_to(sc, iris)
Базовый метод R
Это базовый метод R, который удаляет дублирующиеся строки, сохраняя только строку с наибольшим значением для Sepal.Length
:
iris_order = iris[order(iris[,'Sepal.Length'],-iris[,'Sepal.Length']),] ### sort first
iris_subset = iris_order[!duplicated(iris_order$Sepal.Length),] ### Keep highest
dim(iris_subset) # 35 5
, но это не работает для tbl_spark
объекта:
iris_spark_order = iris_spark[order(iris_spark[,'Sepal.Length'],-iris_spark[,'Sepal.Length']),]
Ошибка в iris_spark [, "Sepal.Length"]: неверное количество измерений
Tidyverse
Существует два возможных dplyr
решения, которые я могу придумать, которые подходят для data.frame
, но не tbl_spark
:
1)
library(dplyr)
iris %>% distinct()
iris_spark %>% distinct()
Error: org.apache.spark.sql.AnalysisException: cannot resolve '`Sepal.Length`' given input columns: [iris.Sepal_Length, iris.Sepal_Width, iris.Petal_Width, iris.Petal_Length, iris.Species]; line 1 pos 16;
'Distinct
+- 'Project ['Sepal.Length]
+- SubqueryAlias iris
+- LogicalRDD [Sepal_Length#13, Sepal_Width#14, Petal_Length#15, Petal_Width#16, Species#17], false
at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:92)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:89)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:288)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsUp$1.apply(QueryPlan.scala:95)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$transformExpressionsUp$1.apply(QueryPlan.scala:95)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:107)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$1.apply(QueryPlan.scala:107)
at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpression$1(QueryPlan.scala:106)
at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1(QueryPlan.scala:118)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1$1.apply(QueryPlan.scala:122)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
at scala.collection.immutable.List.foreach(List.scala:381)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
at scala.collection.immutable.List.map(List.scala:285)
at org.apache.spark.sql.catalyst.plans.QueryPlan.org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$1(QueryPlan.scala:122)
at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2.apply(QueryPlan.scala:127)
at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187)
at org.apache.spark.sql.catalyst.plans.QueryPlan.mapExpressions(QueryPlan.scala:127)
at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:95)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:89)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:84)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:127)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126)
at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$foreachUp$1.apply(TreeNode.scala:126)
at scala.collection.immutable.List.foreach(List.scala:381)
at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:126)
at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:84)
at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:92)
at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:105)
at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57)
at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55)
at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47)
at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74)
at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:642)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(Unknown Source)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(Unknown Source)
at java.lang.reflect.Method.invoke(Unknown Source)
at sparklyr.Invoke.invoke(invoke.scala:147)
at sparklyr.StreamHandler.handleMethodCall(stream.scala:123)
at sparklyr.StreamHandler.read(stream.scala:66)
at sparklyr.BackendHandler.channelRead0(handler.scala:51)
at sparklyr.BackendHandler.channelRead0(handler.scala:4)
at io.netty.channel.SimpleChannelInboundHandler.channelRead(SimpleChannelInboundHandler.java:105)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.MessageToMessageDecoder.channelRead(MessageToMessageDecoder.java:102)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.handler.codec.ByteToMessageDecoder.fireChannelRead(ByteToMessageDecoder.java:310)
at io.netty.handler.codec.ByteToMessageDecoder.channelRead(ByteToMessageDecoder.java:284)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.AbstractChannelHandlerContext.fireChannelRead(AbstractChannelHandlerContext.java:340)
at io.netty.channel.DefaultChannelPipeline$HeadContext.channelRead(DefaultChannelPipeline.java:1359)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:362)
at io.netty.channel.AbstractChannelHandlerContext.invokeChannelRead(AbstractChannelHandlerContext.java:348)
at io.netty.channel.DefaultChannelPipeline.fireChannelRead(DefaultChannelPipeline.java:935)
at io.netty.channel.nio.AbstractNioByteChannel$NioByteUnsafe.read(AbstractNioByteChannel.java:138)
at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:645)
at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:580)
at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:497)
at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:459)
at io.netty.util.concurrent.SingleThreadEventExecutor$5.run(SingleThreadEventExecutor.java:858)
at io.netty.util.concurrent.DefaultThreadFactory$DefaultRunnableDecorator.run(DefaultThreadFactory.java:138)
at java.lang.Thread.run(Unknown Source)
2)
iris_order <- arrange(iris, Sepal.Length)
iris_subset <- iris_order [!duplicated(iris_order $Sepal.Length),]
, но не работает на tbl_spark
объекте:
library(dplyr)
iris_order <- arrange(iris_spark, Sepal.Length)
iris_subset <- iris_order [!duplicated(iris_order$Sepal.Length),]
Ошибка в iris_order [! Duplicated (iris_order $ Sepal.Length) ),]: неверное число измерений
data.table
Решение DT
для data.frame
library(data.table)
df <- iris # iris resides in package that is locked so copy to new object
unique(setDT(df)[order(Sepal.Length, -Species)], by = "Sepal.Length")
, но не работает на tbl_spark
объект:
unique(setDT(iris_spark)[order(Sepal.Length)], by = "Sepal.Length")
Ошибка в с etDT (iris_spark): Все элементы в аргументе от 'x' до 'setDT' должны иметь одинаковую длину, но профиль входных длин (длина: частота): [1: 1, 2: 1] Первая запись с меньшим, чем 2 записи - это 1
Так как же один на самом деле завершил sh эту задачу в Spark с sparklyr
?