Как подсчитать, сколько яблок или бананов обнаружено камерой? - PullRequest
0 голосов
/ 16 апреля 2020

Я нашел этот код. Эта программа использует классификатор TensorFlow для выполнения обнаружения и подсчета объектов.

В нем * * * * * * * * * * * * * * * * * * *. для подсчета нет. объектов в кадре. Как изменить код для подсчета целевых объектов, таких как бананы и яблоки, которые обнаруживает камера?

######## Object counting using tensorflow on picamera #########
# Author: Vineeth Rajendran
# Date: 4/1/19
# Description: 
# This program uses a TensorFlow classifier to perform object detection and counting.
# It draws boxes and scores around the objects of interest in each frame from the picamera.
# IT also uses a variable for counting the no. of objects in the frame.

## Some of the code is copied from Evan Juras example at
## https://github.com/EdjeElectronics/TensorFlow-Object-Detection-on-the-Raspberry-Pi/blob/master/Object_detection_picamera.py


# Import packages
import os
import cv2
import numpy as np
from picamera.array import PiRGBArray
from picamera import PiCamera
import tensorflow as tf
import argparse
import sys

# Set up camera constants
IM_WIDTH = 1280
IM_HEIGHT = 720
#IM_WIDTH = 640    Use smaller resolution for
#IM_HEIGHT = 480   slightly faster framerate

# Select camera type (if user enters --usbcam when calling this script,
# a USB webcam will be used)
camera_type = 'picamera'
parser = argparse.ArgumentParser()
parser.add_argument('--usbcam', help='Use a USB webcam instead of picamera',
                    action='store_true')
args = parser.parse_args()
if args.usbcam:
    camera_type = 'usb'

# This is needed since the working directory is the object_detection folder.
sys.path.append('..')

# Import utilites
from utils import label_map_util
from utils import visualization_utils as vis_util

# Name of the directory containing the object detection module we're using
MODEL_NAME = 'ssdlite_mobilenet_v2_coco_2018_05_09'

# Grab path to current working directory
CWD_PATH = os.getcwd()

# Path to frozen detection graph .pb file, which contains the model that is used
# for object detection.
PATH_TO_CKPT = os.path.join(CWD_PATH,MODEL_NAME,'frozen_inference_graph.pb')

# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'data','mscoco_label_map.pbtxt')

# Number of classes the object detector can identify
NUM_CLASSES = 90

## Load the label map.
# Label maps map indices to category names, so that when the convolution
# network predicts `5`, we know that this corresponds to `airplane`.
# Here we use internal utility functions, but anything that returns a
# dictionary mapping integers to appropriate string labels would be fine
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES, use_display_name=True)
category_index = label_map_util.create_category_index(categories)

# Load the Tensorflow model into memory.
detection_graph = tf.Graph()
with detection_graph.as_default():
    od_graph_def = tf.GraphDef()
    with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
        serialized_graph = fid.read()
        od_graph_def.ParseFromString(serialized_graph)
        tf.import_graph_def(od_graph_def, name='')

    sess = tf.Session(graph=detection_graph)


# Define input and output tensors (i.e. data) for the object detection classifier

# Input tensor is the image
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')

# Output tensors are the detection boxes, scores, and classes
# Each box represents a part of the image where a particular object was detected
detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')

# Each score represents level of confidence for each of the objects.
# The score is shown on the result image, together with the class label.
detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')

# Number of objects detected
num_detections = detection_graph.get_tensor_by_name('num_detections:0')

# creating a fucntion 
def object_counting()
    # Initialize Picamera and grab reference to the raw capture
    camera = PiCamera()
    camera.resolution = (IM_WIDTH,IM_HEIGHT)
    camera.framerate = 10
    rawCapture = PiRGBArray(camera, size=(IM_WIDTH,IM_HEIGHT))
    rawCapture.truncate(0)

    for frame1 in camera.capture_continuous(rawCapture, format="bgr",use_video_port=True):

        totalcount=0

        # Acquire frame and expand frame dimensions to have shape: [1, None, None, 3]
        # i.e. a single-column array, where each item in the column has the pixel RGB value
        frame = np.copy(frame1.array)
        frame.setflags(write=1)
        frame_expanded = np.expand_dims(frame, axis=0)

        # Perform the actual detection by running the model with the image as input
        (boxes, scores, classes, num) = sess.run(
            [detection_boxes, detection_scores, detection_classes, num_detections],
            feed_dict={image_tensor: frame_expanded})

        # Visualizing the results of the detection
        vis_util.visualize_boxes_and_labels_on_image_array(
            frame,
            np.squeeze(boxes),
            np.squeeze(classes).astype(np.int32),
            np.squeeze(scores),
            category_index,
            use_normalized_coordinates=True,
            line_thickness=8,
            min_score_thresh=0.40)

          # Updating totalcount
        totalcount=totalcount+num

          # Displaying the number of objects detected using the totalcount variable
        cv2.putText(frame,"Count"+str(totalcount) ,(10, 35),font,0.8,(0, 0xFF, 0xFF),2,cv2.FONT_HERSHEY_SIMPLEX,)

        # All the results have been drawn on the frame, so it's time to display it.
        cv2.imshow('Object detector', frame)

        # Press 'q' to quit
        if cv2.waitKey(1) == ord('q'):
            break

        rawCapture.truncate(0)

    camera.close()

cv2.destroyAllWindows()

object_counting()

1 Ответ

0 голосов
/ 16 апреля 2020

Приведенный выше код использует модель из TF Object Detection API. Эта модель была обучена на наборе данных с именем COCO (http://cocodataset.org/#home). Этот набор данных содержит много общих классов (всего 80 классов для обнаружения), вы можете узнать, какие классы существуют в файлах меток, вызываемых из сценария. :

# Path to label map file
PATH_TO_LABELS = os.path.join(CWD_PATH,'data','mscoco_label_map.pbtxt')

Вы увидите много классов (человек, машина, автобус, собака ...), и даже «апельсин» и «банан». Поэтому, пока ваш скрипт подсчитывает, сколько объектов обнаружил детектор, вас интересуют только определенные c классы (метки):

231 item {
232   name: "/m/09qck"
233   id: 52
234   display_name: "banana"
235 }
...
246 item {
247   name: "/m/0cyhj_"
248   id: 55
249   display_name: "orange"
250 }

Итак, класс 52 - банан, а класс 55 - оранжевый.

Что осталось сделать, так это взять результаты из следующих строк:

# Perform the actual detection by running the model with the image as input
(boxes, scores, classes, num) = sess.run(
    [detection_boxes, detection_scores, detection_classes, num_detections],
    feed_dict={image_tensor: frame_expanded})

Посмотрите на полученные вами классы и посчитайте, сколько раз появилось 52 и сколько раз появилось грива 55 , (простая команда типа: numpy .sum (classes == 52) должна сделать свое дело)

...