Пример данных
from pyspark.sql.types import IntegerType, LongType, StringType, StructField, StructType
tuples_a = [('613760', 'ABCDEFGHI'),
('613740', 'TEST123'),
('598946', 'OMG'),
]
schema_a = StructType([
StructField('deal_id', StringType(), nullable=False),
StructField('deal_name', StringType(), nullable=False)
])
tuples_b = [('613760,613761,613762,613763 ', 'Direct De'),
('613740,613750,613770,613780,613790', 'Direct'),
('598946', 'In'),
]
schema_b = StructType([
StructField('deal_id', StringType(), nullable=False),
StructField('deal_type', StringType(), nullable=False)
])
df_a = spark_session.createDataFrame(data=tuples_a, schema=schema_a)
df_b = spark_session.createDataFrame(data=tuples_b, schema=schema_b)
Вам нужно разбить столбец и разбить его, чтобы присоединиться.
from pyspark.sql.functions import split, col, explode
df_b = df_b.withColumn('split', split(col('deal_id'), ','))\
.withColumn('exploded', explode(col('split')))\
.drop('deal_id', 'split')\
.withColumnRenamed('exploded', 'deal_id')
df_a.join(df_b, on = 'deal_id', how = 'left_outer')\
.show(10, False)
и ожидаемый результат
+-------+---------+---------+
|deal_id|deal_name|deal_type|
+-------+---------+---------+
|613760 |ABCDEFGHI|Direct De|
|613740 |TEST123 |Direct |
|598946 |OMG |In |
+-------+---------+---------+