Попытка тренироваться: получил "Ошибка загрузки DLL при импорте". Как исправить? - PullRequest
0 голосов
/ 16 апреля 2020

Описание: я пытаюсь запустить этот код, который предназначен для обнаружения модели оружия с помощью машинного обучения. я выполнил базовую настройку c, используя шаги из этой ссылки https://tensorflow-object-detection-api-tutorial.readthedocs.io/en/latest/training.html#configuring -a-training-pipe , и я поражен настройкой части обучающего конвейера.

and I faced the error when i run the below code. following is the error and later is the code

(labelimg) C:\Users\reddy\Tensorflow\workspace\training_demo>python model_main.py --alsologtostderr --model_dir=training/ --pipeline_config_path=training/ssd_inception_v2_coco.config
Traceback (most recent call last):
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module>
    from tensorflow.python.pywrap_tensorflow_internal import *
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module>
    _pywrap_tensorflow_internal = swig_import_helper()
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper
    _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\imp.py", line 242, in load_module
    return load_dynamic(name, filename, file)
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\imp.py", line 342, in load_dynamic
    return _load(spec)
ImportError: DLL load failed while importing _pywrap_tensorflow_internal: The specified module could not be found.

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "model_main.py", line 23, in <module>
    import tensorflow as tf
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\__init__.py", line 41, in <module>
    from tensorflow.python.tools import module_util as _module_util
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\python\__init__.py", line 50, in <module>
    from tensorflow.python import pywrap_tensorflow
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 69, in <module>
    raise ImportError(msg)
ImportError: Traceback (most recent call last):
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\python\pywrap_tensorflow.py", line 58, in <module>
    from tensorflow.python.pywrap_tensorflow_internal import *
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 28, in <module>
    _pywrap_tensorflow_internal = swig_import_helper()
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\site-packages\tensorflow\python\pywrap_tensorflow_internal.py", line 24, in swig_import_helper
    _mod = imp.load_module('_pywrap_tensorflow_internal', fp, pathname, description)
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\imp.py", line 242, in load_module
    return load_dynamic(name, filename, file)
  File "C:\Users\reddy\Anaconda3\envs\labelimg\lib\imp.py", line 342, in load_dynamic
    return _load(spec)
ImportError: DLL load failed while importing _pywrap_tensorflow_internal: The specified module could not be found.


Failed to load the native TensorFlow runtime.

See https://www.tensorflow.org/install/errors

for some common reasons and solutions.  Include the entire stack trace
above this error message when asking for help.

Ниже приведен код, который я пытаюсь запустить в командной строке anaconda # code:

# SSD with Inception v2 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.

model {
  ssd {
    num_classes: 6  
    box_coder {
      faster_rcnn_box_coder {
        y_scale: 10.0
        x_scale: 10.0
        height_scale: 5.0
        width_scale: 5.0
      }
    }
    matcher {
      argmax_matcher {
        matched_threshold: 0.5
        unmatched_threshold: 0.5
        ignore_thresholds: false
        negatives_lower_than_unmatched: true
        force_match_for_each_row: true
      }
    }
    similarity_calculator {
      iou_similarity {
      }
    }
    anchor_generator {
      ssd_anchor_generator {
        num_layers: 6
        min_scale: 0.2
        max_scale: 0.95
        aspect_ratios: 1.0
        aspect_ratios: 2.0
        aspect_ratios: 0.5
        aspect_ratios: 3.0
        aspect_ratios: 0.3333
        reduce_boxes_in_lowest_layer: true
      }
    }
    image_resizer {
      fixed_shape_resizer {
        height: 300
        width: 300
      }
    }
    box_predictor {
      convolutional_box_predictor {
        min_depth: 0
        max_depth: 0
        num_layers_before_predictor: 0
        use_dropout: false
        dropout_keep_probability: 0.8
        kernel_size: 3
        box_code_size: 4
        apply_sigmoid_to_scores: false
        conv_hyperparams {
          activation: RELU_6,
          regularizer {
            l2_regularizer {
              weight: 0.00004
            }
          }
          initializer {
            truncated_normal_initializer {
              stddev: 0.03
              mean: 0.0
            }
          }
        }
      }
    }
    feature_extractor {
      type: 'ssd_inception_v2'
      min_depth: 16
      depth_multiplier: 1.0
      conv_hyperparams {
        activation: RELU_6,
        regularizer {
          l2_regularizer {
            weight: 0.00004
          }
        }
        initializer {
          truncated_normal_initializer {
            stddev: 0.03
            mean: 0.0
          }
        }
        batch_norm {
          train: true,
          scale: true,
          center: true,
          decay: 0.9997,
          epsilon: 0.001,
        }
      }
      override_base_feature_extractor_hyperparams: true
    }
    loss {
      classification_loss {
        weighted_sigmoid {
        }
      }
      localization_loss {
        weighted_smooth_l1 {
        }
      }
      hard_example_miner {
        num_hard_examples: 3000
        iou_threshold: 0.99
        loss_type: CLASSIFICATION
        max_negatives_per_positive: 3
        min_negatives_per_image: 0
      }
      classification_weight: 1.0
      localization_weight: 1.0
    }
    normalize_loss_by_num_matches: true
    post_processing {
      batch_non_max_suppression {
        score_threshold: 1e-8
        iou_threshold: 0.6
        max_detections_per_class: 100
        max_total_detections: 100
      }
      score_converter: SIGMOID
    }
  }
}

train_config: {
  batch_size: 24
  optimizer {
    rms_prop_optimizer: {
      learning_rate: {
        exponential_decay_learning_rate {
          initial_learning_rate: 0.004
          decay_steps: 800720
          decay_factor: 0.95
        }
      }
      momentum_optimizer_value: 0.9
      decay: 0.9
      epsilon: 1.0
    }
  }
  fine_tune_checkpoint: "C:\Users\reddy\Tensorflow\workspace\training_demo\pre-trained-model\ssd_inception_v2_coco_2018_01_28/model.ckpt"
  from_detection_checkpoint: true
  # Note: The below line limits the training process to 200K steps, which we
  # empirically found to be sufficient enough to train the pets dataset. This
  # effectively bypasses the learning rate schedule (the learning rate will
  # never decay). Remove the below line to train indefinitely.
  num_steps: 200000
  data_augmentation_options {
    random_horizontal_flip {
    }
  }
  data_augmentation_options {
    ssd_random_crop {
    }
  }
}

train_input_reader: {
  tf_record_input_reader {
    input_path: "C:\Users\reddy\Tensorflow\workspace\training_demo\annotations\train.record"
  }
  label_map_path: "C:\Users\reddy\Tensorflow\workspace\training_demo\annotations\label_map.pbtxt"
}

eval_config: {
  metrics_set: "coco_detection_metrics"
  num_examples: 860
  # Note: The below line limits the evaluation process to 10 evaluations.
  # Remove the below line to evaluate indefinitely.
  max_evals: 10
}

eval_input_reader: {
  tf_record_input_reader {
    input_path: "C:\Users\reddy\Tensorflow\workspace\training_demo\annotations\train.record"
  }
  label_map_path: "C:\Users\reddy\Tensorflow\workspace\training_demo\annotations\label_map.pbtxt"
  shuffle: false
  num_readers: 1
}
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...