у вас есть несколько способов справиться с этим, сначала воспользуйтесь моим предыдущим решением, но для этого потребуется отображение c чисел в месяцах (т. Е. Сентябрь = 1, август = 12), чтобы вы могли применять математику для последовательной работы значения.
ниже необходимо преобразовать Месяц в DateTime и вычислить разницу в месяцах, затем мы можем применить накопительную сумму и отфильтровать любые значения больше 3.
d = StringIO("""Name Month Grade
Sue Jan D
Sue Feb D
Jason Mar B
Sue Dec D
Jason Jan B
Sue Apr A
Jason Feb C""")
df = pd.read_csv(d,sep='\s+')
df['date'] = pd.to_datetime(df['Month'],format='%b').dt.normalize()
# set any values greater than June to the previous year.
df['date'] = np.where(df['date'].dt.month > 6,
(df['date'] - pd.DateOffset(years=1)),df['date'])
df.sort_values(['Name','date'],inplace=True)
def month_diff(date):
cumlative_months = (
np.round(((date.sub(date.shift(1)) / np.timedelta64(1, "M")))).eq(1).cumsum()
) + 1
return cumlative_months
df['count'] = df.groupby(["Name", "Grade"])["date"].apply(month_diff)
print(df.drop('date',axis=1))
Name Month Grade count
4 Jason Jan B 1
6 Jason Feb C 1
2 Jason Mar B 1
3 Sue Dec D 1
0 Sue Jan D 2
1 Sue Feb D 3
5 Sue Apr A 1
print(df.loc[df['Name'] == 'Sue'])
Name Month Grade date count
3 Sue Dec D 1899-12-01 1
0 Sue Jan D 1900-01-01 2
1 Sue Feb D 1900-02-01 3
5 Sue Apr A 1900-04-01 1