Я обучил пользовательскую модель обнаружения объектов, используя шаги, описанные в этой ссылке . Я могу обучить свою модель, но когда я пытаюсь оценить ее в конце эпохи, я получаю следующую ошибку
Epoch: [0] Total time: 0:00:06 (0.2223 s / it)
creating index...
index created!
Traceback (most recent call last):
File "train.py", line 106, in <module>
evaluate(model, data_loader_test, device=device)
File "/home/sarvani/anaconda3/envs/flir_env/lib/python3.7/site-packages/torch/autograd/grad_mode.py", line 49, in decorate_no_grad
return func(*args, **kwargs)
File "/home/sarvani/Desktop/flir/test_frcnn/custom/engine.py", line 107, in evaluate
outputs = model(image)
File "/home/sarvani/anaconda3/envs/flir_env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/home/sarvani/anaconda3/envs/flir_env/lib/python3.7/site-packages/torchvision/models/detection/generalized_rcnn.py", line 47, in forward
images, targets = self.transform(images, targets)
File "/home/sarvani/anaconda3/envs/flir_env/lib/python3.7/site-packages/torch/nn/modules/module.py", line 547, in __call__
result = self.forward(*input, **kwargs)
File "/home/sarvani/anaconda3/envs/flir_env/lib/python3.7/site-packages/torchvision/models/detection/transform.py", line 41, in forward
image, target = self.resize(image, target)
File "/home/sarvani/anaconda3/envs/flir_env/lib/python3.7/site-packages/torchvision/models/detection/transform.py", line 70, in resize
image[None], scale_factor=scale_factor, mode='bilinear', align_corners=False)[0]
File "/home/sarvani/anaconda3/envs/flir_env/lib/python3.7/site-packages/torch/nn/functional.py", line 2503, in interpolate
return torch._C._nn.upsample_bilinear2d(input, _output_size(2), align_corners)
RuntimeError: "upsample_bilinear2d_out_frame" not implemented for 'Byte'
Мой код для загрузки данных выглядит следующим образом
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, root_dir,transform=None):
self.root = root_dir
self.rgb_imgs = list(sorted(os.listdir(os.path.join(root_dir, "rgb/"))))
self.annotations = list(sorted(os.listdir(os.path.join(root_dir, "annotations/"))))
self._classes = ('__background__', # always index 0
'car','person','bicycle','dog','other')
self._class_to_ind = {'car':'1', 'person':'2', 'bicycle':'3', 'dog':'4','other':'5'}
def __len__(self):
return len(self.rgb_imgs)
def __getitem__(self, idx):
self.num_classes = 6
img_rgb_path = os.path.join(self.root, "rgb/", self.rgb_imgs[idx])
img = Image.open(img_rgb_path)
img = np.array(img)
img = img.transpose((2, 0, 1))
img = torch.from_numpy(img)
filename = os.path.join(self.root,'annotations',self.annotations[idx])
tree = ET.parse(filename)
objs = tree.findall('object')
num_objs = len(objs)
labels = np.zeros((num_objs), dtype=np.float32)
seg_areas = np.zeros((num_objs), dtype=np.float32)
boxes = []
for ix, obj in enumerate(objs):
bbox = obj.find('bndbox')
x1 = float(bbox.find('xmin').text)
y1 = float(bbox.find('ymin').text)
x2 = float(bbox.find('xmax').text)
y2 = float(bbox.find('ymax').text)
cls = self._class_to_ind[obj.find('name').text.lower().strip()]
boxes.append([x1, y1, x2, y2])
labels[ix] = cls
boxes = torch.as_tensor(boxes, dtype=torch.float32)
area = (boxes[:, 3] - boxes[:, 1]) * (boxes[:, 2] - boxes[:, 0])
image_id = torch.tensor([idx])
iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
labels = torch.as_tensor(labels, dtype=torch.float32)
target = {'boxes': boxes,
'labels': labels,
'area': area,
"image_id":image_id
}
target["iscrowd"] = iscrowd
return img,target
Мой train.py выглядит следующим образом
num_classes = 6
model = fasterrcnn_resnet50_fpn(pretrained=True)
in_features = model.roi_heads.box_predictor.cls_score.in_features
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
device = torch.device('cuda')
model = model.cuda()
dataset_train = CustomDataset('FLIR/images/train')
dataset_val = CustomDataset('FLIR/images/val')
data_loader_train = torch.utils.data.DataLoader(
dataset_train, batch_size=4, shuffle=True,collate_fn=utils.collate_fn)
data_loader_test = torch.utils.data.DataLoader(
dataset_val, batch_size=4 shuffle=False,collate_fn=utils.collate_fn)
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.Adam(params,lr=0.05,weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
step_size=3,
gamma=0.1)
num_epochs = 30
for epoch in range(num_epochs):
train_one_epoch(model, optimizer, data_loader_train, device, epoch, print_freq=1)
lr_scheduler.step()
evaluate(model, data_loader_test, device=device)
Функция оценки с необходимыми файлами находится по этой ссылке .
Может кто-нибудь, пожалуйста, помогите мне вне.