PyTorch LSTM имеет нан для MSELoss - PullRequest
3 голосов
/ 01 марта 2020

Моя модель:

class BaselineModel(nn.Module):
    def __init__(self, feature_dim=5, hidden_size=5, num_layers=2, batch_size=32):
        super(BaselineModel, self).__init__()
        self.num_layers = num_layers
        self.hidden_size = hidden_size

        self.lstm = nn.LSTM(input_size=feature_dim,
                            hidden_size=hidden_size, num_layers=num_layers)

    def forward(self, x, hidden):
        lstm_out, hidden = self.lstm(x, hidden)
        return lstm_out, hidden

    def init_hidden(self, batch_size):
        hidden = Variable(next(self.parameters()).data.new(
            self.num_layers, batch_size, self.hidden_size))
        cell = Variable(next(self.parameters()).data.new(
            self.num_layers, batch_size, self.hidden_size))
        return (hidden, cell)

Обучение выглядит следующим образом:

train_loader = torch.utils.data.DataLoader(
    train_set, batch_size=BATCH_SIZE, shuffle=True, **params)

model = BaselineModel(batch_size=BATCH_SIZE)
optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=0.0001)
loss_fn = torch.nn.MSELoss(reduction='sum')

for epoch in range(250):

    # hidden = (torch.zeros(2, 13, 5),
    #           torch.zeros(2, 13, 5))
    # model.hidden = hidden
    for i, data in enumerate(train_loader):
        hidden = model.init_hidden(13)
        inputs = data[0]
        outputs = data[1]

        print('inputs',  inputs.size())
        # print('outputs', outputs.size())

        # optimizer.zero_grad()
        model.zero_grad()

        # print('inputs', inputs)
        pred, hidden = model(inputs, hidden)

        loss = loss_fn(pred, outputs)

        loss.backward()
        torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
        optimizer.step()

        print('Epoch: ', epoch, '\ti: ', i, '\tLoss: ', loss)

У меня уже установлено градиентное отсечение, что кажется рекомендуемым решением. Но даже после первого шага я получаю:

Эпоха: 0 i: 0 Потеря: тензор (nan, grad_fn =)

1 Ответ

1 голос
/ 10 марта 2020

Я подозреваю, что ваша проблема связана с вашими результатами / data[1] (было бы полезно, если бы вы показали примеры вашего train_set). Выполнение следующего фрагмента кода не дает nan, но я переделал форму вывода вручную перед вызовом loss_fn(pred, outputs):

class BaselineModel(nn.Module):
    def __init__(self, feature_dim=5, hidden_size=5, num_layers=2, batch_size=32):
        super(BaselineModel, self).__init__()
        self.num_layers = num_layers
        self.hidden_size = hidden_size

        self.lstm = nn.LSTM(input_size=feature_dim,
                            hidden_size=hidden_size, num_layers=num_layers)

    def forward(self, x, hidden):
        lstm_out, hidden = self.lstm(x, hidden)
        return lstm_out, hidden

    def init_hidden(self, batch_size):
        hidden = Variable(next(self.parameters()).data.new(
            self.num_layers, batch_size, self.hidden_size))
        cell = Variable(next(self.parameters()).data.new(
            self.num_layers, batch_size, self.hidden_size))
        return (hidden, cell)

model = BaselineModel(batch_size=32)
optimizer = optim.Adam(model.parameters(), lr=0.01, weight_decay=0.0001)
loss_fn = torch.nn.MSELoss(reduction='sum')

hidden = model.init_hidden(10)
model.zero_grad()
pred, hidden = model(torch.randn(2,10,5), hidden)
pred.size() #torch.Size([2, 10, 5])
outputs = torch.zeros(2,10,5)

loss = loss_fn(pred, outputs)
loss

loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
print(loss)

Обратите внимание, что общая причина значений nan может быть связана с числовой стабильностью вашего фаза обучения, но обычно у вас есть значения для первых шагов, прежде чем вы увидите, что происходит расхождение, что, очевидно, здесь не так.

...