Поиск всех комбинаций свободных полиомино в заданной области c с помощью SAT-решателя (Python) - PullRequest
15 голосов
/ 14 января 2020

Я новичок в мире решателей SAT, и мне потребуются некоторые рекомендации относительно следующей проблемы.

Учитывая, что:

❶ У меня есть выбор из 14 соседних ячеек в 4 * 4 сетки

❷ У меня 5 полиамино (A, B, C, D, E) размеров 4, 2, 5, 2 и 1

❸ эти полиомино свободны , т. е. их форма не фиксирована и может образовывать различные узоры

enter image description here

Как вычислить все возможные комбинации этих 5 свободных полиомино внутри выделенной области (ячейки серого цвета) с SAT-решателем?

Заимствуя как проницательный ответ @ spinkus, так и документацию по OR-инструментам, я мог бы сделать следующий пример кода (работает в ноутбуке Jupyter):

from ortools.sat.python import cp_model

import numpy as np
import more_itertools as mit
import matplotlib.pyplot as plt
%matplotlib inline


W, H = 4, 4 #Dimensions of grid
sizes = (4, 2, 5, 2, 1) #Size of each polyomino
labels = np.arange(len(sizes))  #Label of each polyomino

colors = ('#FA5454', '#21D3B6', '#3384FA', '#FFD256', '#62ECFA')
cdict = dict(zip(labels, colors)) #Color dictionary for plotting

inactiveCells = (0, 1) #Indices of disabled cells (in 1D)
activeCells = set(np.arange(W*H)).difference(inactiveCells) #Cells where polyominoes can be fitted
ranges = [(next(g), list(g)[-1]) for g in mit.consecutive_groups(activeCells)] #All intervals in the stack of active cells



def main():
    model = cp_model.CpModel()


    #Create an Int var for each cell of each polyomino constrained to be within Width and Height of grid.
    pminos = [[] for s in sizes]
    for idx, s in enumerate(sizes):
        for i in range(s):
            pminos[idx].append([model.NewIntVar(0, W-1, 'p%i'%idx + 'c%i'%i + 'x'), model.NewIntVar(0, H-1, 'p%i'%idx + 'c%i'%i + 'y')])



    #Define the shapes by constraining the cells relative to each other

    ## 1st polyomino -> tetromino ##
    #                              #      
    #                              # 
    #            #                 # 
    #           ###                # 
    #                              # 
    ################################

    p0 = pminos[0]
    model.Add(p0[1][0] == p0[0][0] + 1) #'x' of 2nd cell == 'x' of 1st cell + 1
    model.Add(p0[2][0] == p0[1][0] + 1) #'x' of 3rd cell == 'x' of 2nd cell + 1
    model.Add(p0[3][0] == p0[0][0] + 1) #'x' of 4th cell == 'x' of 1st cell + 1

    model.Add(p0[1][1] == p0[0][1]) #'y' of 2nd cell = 'y' of 1st cell
    model.Add(p0[2][1] == p0[1][1]) #'y' of 3rd cell = 'y' of 2nd cell
    model.Add(p0[3][1] == p0[1][1] - 1) #'y' of 3rd cell = 'y' of 2nd cell - 1



    ## 2nd polyomino -> domino ##
    #                           #      
    #                           # 
    #           #               # 
    #           #               # 
    #                           # 
    #############################

    p1 = pminos[1]
    model.Add(p1[1][0] == p1[0][0])
    model.Add(p1[1][1] == p1[0][1] + 1)



    ## 3rd polyomino -> pentomino ##
    #                              #      
    #            ##                # 
    #            ##                # 
    #            #                 # 
    #                              #
    ################################

    p2 = pminos[2]
    model.Add(p2[1][0] == p2[0][0] + 1)
    model.Add(p2[2][0] == p2[0][0])
    model.Add(p2[3][0] == p2[0][0] + 1)
    model.Add(p2[4][0] == p2[0][0])

    model.Add(p2[1][1] == p2[0][1])
    model.Add(p2[2][1] == p2[0][1] + 1)
    model.Add(p2[3][1] == p2[0][1] + 1)
    model.Add(p2[4][1] == p2[0][1] + 2)



    ## 4th polyomino -> domino ##
    #                           #      
    #                           # 
    #           #               #   
    #           #               # 
    #                           # 
    #############################

    p3 = pminos[3]
    model.Add(p3[1][0] == p3[0][0])
    model.Add(p3[1][1] == p3[0][1] + 1)



    ## 5th polyomino -> monomino ##
    #                             #      
    #                             # 
    #           #                 # 
    #                             # 
    #                             # 
    ###############################
    #No constraints because 1 cell only



    #No blocks can overlap:
    block_addresses = []
    n = 0
    for p in pminos:
        for c in p:
            n += 1
            block_address = model.NewIntVarFromDomain(cp_model.Domain.FromIntervals(ranges),'%i' % n)
                model.Add(c[0] + c[1] * W == block_address)
                block_addresses.append(block_address)

    model.AddAllDifferent(block_addresses)



    #Solve and print solutions as we find them
    solver = cp_model.CpSolver()

    solution_printer = SolutionPrinter(pminos)
    status = solver.SearchForAllSolutions(model, solution_printer)

    print('Status = %s' % solver.StatusName(status))
    print('Number of solutions found: %i' % solution_printer.count)




class SolutionPrinter(cp_model.CpSolverSolutionCallback):
    ''' Print a solution. '''

    def __init__(self, variables):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.variables = variables
        self.count = 0

    def on_solution_callback(self):
        self.count += 1


        plt.figure(figsize = (2, 2))
        plt.grid(True)
        plt.axis([0,W,H,0])
        plt.yticks(np.arange(0, H, 1.0))
        plt.xticks(np.arange(0, W, 1.0))


        for i, p in enumerate(self.variables):
            for c in p:
                x = self.Value(c[0])
                y = self.Value(c[1])
                rect = plt.Rectangle((x, y), 1, 1, fc = cdict[i])
                plt.gca().add_patch(rect)

        for i in inactiveCells:
            x = i%W
            y = i//W
            rect = plt.Rectangle((x, y), 1, 1, fc = 'None', hatch = '///')
            plt.gca().add_patch(rect)

enter image description here

Проблема в том, что у меня есть жестко запрограммированные 5 уникальных / фиксированных полиамино и я не знаю, как определить ограничения, чтобы каждый возможный шаблон для каждого polyomino был взят в o счет (при условии, что это возможно).

Ответы [ 3 ]

10 голосов
/ 14 января 2020

РЕДАКТИРОВАТЬ: Я пропустил слово "free" в исходном ответе и дал ответ, используя OR-Tools для фиксированных polyomino. В ответ добавлен раздел, включающий в себя решение для свободных полиомино, которое AFAICT оказывается довольно трудным express для точного программирования с помощью OR-Tools.

ИСПРАВЛЕННЫЕ ПОЛИОМИНО С ИЛИ-ИНСТРУМЕНТАМИ:

Да, вы можете сделать это с помощью программирования ограничений в OR-Tools. OR-Tools ничего не знает о геометрии 2D-сетки, поэтому вы должны кодировать геометрию каждой фигуры, которую вы имеете, в терминах позиционных ограничений. Т.е. форма - это набор блоков / ячеек, которые должны иметь определенное отношение друг к другу, должны находиться в пределах сетки и не должны перекрываться. Если у вас есть модель ограничений, просто попросите CP-SAT Solver решить ее, в вашем случае, для всех возможных решений.

Вот действительно простое доказательство концепции с двумя прямоугольниками фигуры в сетке 4x4 (возможно, вы захотите добавить некоторый код интерпретатора к go от описаний фигур до набора переменных и ограничений OR-Tools в более крупномасштабной задаче, поскольку ввод ограничений вручную немного утомительно).

from ortools.sat.python import cp_model

(W, H) = (3, 3) # Width and height of our grid.
(X, Y) = (0, 1) # Convenience constants.


def main():
  model = cp_model.CpModel()
  # Create an Int var for each block of each shape constrained to be within width and height of grid.
  shapes = [
    [
      [ model.NewIntVar(0, W, 's1b1_x'), model.NewIntVar(0, H, 's1b1_y') ],
      [ model.NewIntVar(0, W, 's1b2_x'), model.NewIntVar(0, H, 's1b2_y') ],
      [ model.NewIntVar(0, W, 's1b3_x'), model.NewIntVar(0, H, 's1b3_y') ],
    ],
    [
      [ model.NewIntVar(0, W, 's2b1_x'), model.NewIntVar(0, H, 's2b1_y') ],
      [ model.NewIntVar(0, W, 's2b2_x'), model.NewIntVar(0, H, 's2b2_y') ],
    ]
  ]

  # Define the shapes by constraining the blocks relative to each other.
  # 3x1 rectangle:
  s0 = shapes[0]
  model.Add(s0[0][Y] == s0[1][Y])
  model.Add(s0[0][Y] == s0[2][Y])
  model.Add(s0[0][X] == s0[1][X] - 1)
  model.Add(s0[0][X] == s0[2][X] - 2)
  # 1x2 rectangle:
  s1 = shapes[1]
  model.Add(s1[0][X] == s1[1][X])
  model.Add(s1[0][Y] == s1[1][Y] - 1)

  # No blocks can overlap:
  block_addresses = []
  for i, block in enumerate(blocks(shapes)):
    block_address = model.NewIntVar(0, (W+1)*(H+1), 'b%d' % (i,))
    model.Add(block[X] + (H+1)*block[Y] == block_address)
    block_addresses.append(block_address)
  model.AddAllDifferent(block_addresses)

  # Solve and print solutions as we find them
  solver = cp_model.CpSolver()
  solution_printer = SolutionPrinter(shapes)
  status = solver.SearchForAllSolutions(model, solution_printer)
  print('Status = %s' % solver.StatusName(status))
  print('Number of solutions found: %i' % solution_printer.count)


def blocks(shapes):
  ''' Helper to enumerate all blocks. '''
  for shape in shapes:
    for block in shape:
      yield block


class SolutionPrinter(cp_model.CpSolverSolutionCallback):
    ''' Print a solution. '''

    def __init__(self, variables):
        cp_model.CpSolverSolutionCallback.__init__(self)
        self.variables = variables
        self.count = 0

    def on_solution_callback(self):
      self.count += 1
      solution = [(self.Value(block[X]), self.Value(block[Y])) for shape in self.variables for block in shape]
      print((W+3)*'-')
      for y in range(0, H+1):
        print('|' + ''.join(['#' if (x,y) in solution else ' ' for x in range(0, W+1)]) + '|')
      print((W+3)*'-')


if __name__ == '__main__':
  main()

Дает:

...
------
|    |
| ###|
|  # |
|  # |
------
------
|    |
| ###|
|   #|
|   #|
------
Status = OPTIMAL
Number of solutions found: 60

БЕСПЛАТНЫЕ ПОЛИОМИНО:

Если мы рассмотрим сетка ячеек в виде графика, проблема может быть переосмыслена как нахождение k-раздела ячеек сетки, где каждый раздел имеет определенный c размер, и, кроме того, каждый раздел является связанным компонентом . Т.е. AFAICT нет никакой разницы между подключенным компонентом и polyomino , и остальная часть этого ответа делает это предположение.

Нахождение всех возможных "k-разбиений ячеек сетки, где каждый раздел имеет определенный c размер ", что довольно просто для express в программировании ограничений OR-Tools. Но связность часть жесткая AFAICT (я пытался и потерпел неудачу довольно долгое время ...). Я думаю, что программирование ограничений OR-Tools не является правильным подходом. Я заметил, что в справочнике OR-Tools C ++ для библиотек оптимизации сети есть кое-что о подключенных компонентах , на которые стоит обратить внимание, но я не знаком с этим. С другой стороны, решение наивного рекурсивного поиска в Python вполне выполнимо.

Вот наивное решение «вручную». Это довольно медленно, но терпимо для вашего случая 4х4. Адреса используются для идентификации каждой ячейки в сетке. (Также обратите внимание, что вики-страница ссылается на что-то вроде этого алгоритма как наивное решение и выглядит так, как будто оно предлагает более эффективные алгоритмы для аналогичных проблем с полиомино).

import numpy as np
from copy import copy
from tabulate import tabulate

D = 4 # Dimension of square grid.
KCC = [5,4,2,2] # List of the sizes of the required k connected components (KCCs).
assert(sum(KCC) <= D*D)
VALID_CELLS = range(2,D*D)

def search():
  solutions = set() # Stash of unique solutions.
  for start in VALID_CELLS: # Try starting search from each possible starting point and expand out.
    marked = np.zeros(D*D).tolist()
    _search(start, marked, set(), solutions, 0, 0)
  for solution in solutions:  # Print results.
    print(tabulate(np.array(solution).reshape(D, D)))
  print('Number of solutions found:', len(solutions))

def _search(i, marked, fringe, solutions, curr_count, curr_part):
  ''' Recursively find each possible KCC in the remaining available cells the find the next, until none left '''
  marked[i] = curr_part+1
  curr_count += 1
  if curr_count == KCC[curr_part]: # If marked K cells for the current CC move onto the next one.
    curr_part += 1
    if curr_part == len(KCC): # If marked K cells and there's no more CCs left we have a solution - not necessarily unique.
      solutions.add(tuple(marked))
    else:
      for start in VALID_CELLS:
        if marked[start] == 0:
          _search(start, copy(marked), set(), solutions, 0, curr_part)
  else:
    fringe.update(neighbours(i, D))
    while(len(fringe)):
      j = fringe.pop()
      if marked[j] == 0:
        _search(j, copy(marked), copy(fringe), solutions, curr_count, curr_part)

def neighbours(i, D):
  ''' Find the address of all cells neighbouring the i-th cell in a DxD grid. '''
  row = int(i/D)
  n = []
  n += [i-1] if int((i-1)/D) == row and (i-1) >= 0 else []
  n += [i+1] if int((i+1)/D) == row and (i+1) < D**2 else []
  n += [i-D] if (i-D) >=0 else []
  n += [i+D] if (i+D) < D**2 else []
  return filter(lambda x: x in VALID_CELLS, n)

if __name__ == '__main__':
  search()

Дает:

...
-  -  -  -
0  0  1  1
2  2  1  1
4  2  3  1
4  2  3  0
-  -  -  -
-  -  -  -
0  0  4  3
1  1  4  3
1  2  2  2
1  1  0  2
-  -  -  -
Number of solutions found: 3884
5 голосов
/ 22 января 2020

Одним из относительно простых способов ограничения односвязной области в OR-Tools является ограничение ее границы на цепь . Если все ваши polyominos должны иметь размер меньше 8, нам не нужно беспокоиться о не просто подключенных.

Этот код находит все 3884 решения:

from ortools.sat.python import cp_model

cells = {(x, y) for x in range(4) for y in range(4) if x > 1 or y > 0}
sizes = [4, 2, 5, 2, 1]
num_polyominos = len(sizes)
model = cp_model.CpModel()

# Each cell is a member of one polyomino
member = {
    (cell, p): model.NewBoolVar(f"member{cell, p}")
    for cell in cells
    for p in range(num_polyominos)
}
for cell in cells:
    model.Add(sum(member[cell, p] for p in range(num_polyominos)) == 1)

# Each polyomino contains the given number of cells
for p, size in enumerate(sizes):
    model.Add(sum(member[cell, p] for cell in cells) == size)

# Find the border of each polyomino
vertices = {
    v: i
    for i, v in enumerate(
        {(x + i, y + j) for x, y in cells for i in [0, 1] for j in [0, 1]}
    )
}
edges = [
    edge
    for x, y in cells
    for edge in [
        ((x, y), (x + 1, y)),
        ((x + 1, y), (x + 1, y + 1)),
        ((x + 1, y + 1), (x, y + 1)),
        ((x, y + 1), (x, y)),
    ]
]
border = {
    (edge, p): model.NewBoolVar(f"border{edge, p}")
    for edge in edges
    for p in range(num_polyominos)
}
for (((x0, y0), (x1, y1)), p), border_var in border.items():
    left_cell = ((x0 + x1 + y0 - y1) // 2, (y0 + y1 - x0 + x1) // 2)
    right_cell = ((x0 + x1 - y0 + y1) // 2, (y0 + y1 + x0 - x1) // 2)
    left_var = member[left_cell, p]
    model.AddBoolOr([border_var.Not(), left_var])
    if (right_cell, p) in member:
        right_var = member[right_cell, p]
        model.AddBoolOr([border_var.Not(), right_var.Not()])
        model.AddBoolOr([border_var, left_var.Not(), right_var])
    else:
        model.AddBoolOr([border_var, left_var.Not()])

# Each border is a circuit
for p in range(num_polyominos):
    model.AddCircuit(
        [(vertices[v0], vertices[v1], border[(v0, v1), p]) for v0, v1 in edges]
        + [(i, i, model.NewBoolVar(f"vertex_loop{v, p}")) for v, i in vertices.items()]
    )

# Print all solutions
x_range = range(min(x for x, y in cells), max(x for x, y in cells) + 1)
y_range = range(min(y for x, y in cells), max(y for x, y in cells) + 1)
solutions = 0


class SolutionPrinter(cp_model.CpSolverSolutionCallback):
    def OnSolutionCallback(self):
        global solutions
        solutions += 1
        for y in y_range:
            print(
                *(
                    next(
                        p
                        for p in range(num_polyominos)
                        if self.Value(member[(x, y), p])
                    )
                    if (x, y) in cells
                    else "-"
                    for x in x_range
                )
            )
        print()


solver = cp_model.CpSolver()
solver.SearchForAllSolutions(model, SolutionPrinter())
print("Number of solutions found:", solutions)
4 голосов
/ 14 января 2020

Для каждого многочлена и каждой возможной верхней левой ячейки у вас есть логическая переменная, которая указывает, является ли эта ячейка верхней левой частью окружающего прямоугольника.

Для каждой ячейки и каждого полиомино у вас есть логическая переменная, которая указывает, занята ли эта ячейка этим polyomino.

Теперь, для каждой ячейки и каждого polyomino, у вас есть ряд значений: верхняя левая ячейка выбрана, подразумевает, что каждая ячейка фактически занята этим polyomino.

Тогда ограничения: для каждой ячейки, самое большее одно polyomino занимает его для каждого polyomino, есть только одна ячейка, которая является его верхней левой частью.

это чисто логическая проблема.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...