Как временно масштабировать изображения для гомографии и деформации в OpenCV - PullRequest
0 голосов
/ 17 апреля 2020

Я использую следующий алгоритм, чтобы выровнять два сложенных изображения, но для моих целей это очень медленно при использовании фотографий с высоким разрешением.

Я подумал улучшить скорость, временно изменив размеры рабочих изображений только во время обработки чтобы уменьшить im1Gray & im2Gray . К сожалению, это не работает, так как результат warpPerspective неверен при применении его к полноразмерному изображению.

Как правильно масштабировать операции гомографии и деформации?

#include <opencv2/opencv.hpp>
#include <opencv2/xfeatures2d.hpp>
#include <opencv2/features2d.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>

#define CV_BGR2GRAY cv::COLOR_BGRA2GRAY
using namespace std;
using namespace cv;

const int MAX_FEATURES = 500;
const float GOOD_MATCH_PERCENT = 0.15f;

void alignImages(Mat &im1, Mat &im2, Mat &im1Reg, Mat &h)
{
  // Convert images to grayscale
  Mat im1Gray, im2Gray;
  cvtColor(im1, im1Gray, CV_BGR2GRAY);
  cvtColor(im2, im2Gray, CV_BGR2GRAY);

    //const double scale = 512.0f / image_base_gray.size().width;
    //cv::resize(im1Gray, im1Gray, cv::Size(0, 0), scale, scale, cv::INTER_LINEAR);
    //cv::resize(im2Gray, im2Gray, cv::Size(0, 0), scale, scale, cv::INTER_LINEAR);

  // Variables to store keypoints and descriptors
  std::vector<KeyPoint> keypoints1, keypoints2;
  Mat descriptors1, descriptors2;

  // Detect ORB features and compute descriptors.
  Ptr<Feature2D> orb = ORB::create(MAX_FEATURES);
  orb->detectAndCompute(im1Gray, Mat(), keypoints1, descriptors1);
  orb->detectAndCompute(im2Gray, Mat(), keypoints2, descriptors2);

  // Match features.
  std::vector<DMatch> matches;
  Ptr<DescriptorMatcher> matcher = DescriptorMatcher::create("BruteForce-Hamming");
  matcher->match(descriptors1, descriptors2, matches, Mat());

  // Sort matches by score
  std::sort(matches.begin(), matches.end());

  // Remove not so good matches
  const int numGoodMatches = matches.size() * GOOD_MATCH_PERCENT;
  matches.erase(matches.begin()+numGoodMatches, matches.end());

  // Draw top matches
  Mat imMatches;
  drawMatches(im1, keypoints1, im2, keypoints2, matches, imMatches);
  imwrite("matches.jpg", imMatches);

  // Extract location of good matches
  std::vector<Point2f> points1, points2;

  for( size_t i = 0; i < matches.size(); i++ )
  {
    points1.push_back( keypoints1[ matches[i].queryIdx ].pt );
    points2.push_back( keypoints2[ matches[i].trainIdx ].pt );
  }

  // Find homography
  h = findHomography( points1, points2, RANSAC );

  // Use homography to warp image
  warpPerspective(im1, im1Reg, h, im2.size());

}


int main(int argc, char **argv)
{
  // Read reference image
  string refFilename("form.jpg"); 
  cout << "Reading reference image : " << refFilename << endl; 
  Mat imReference = imread(refFilename);

  // Read image to be aligned
  string imFilename("scanned-form.jpg");
  cout << "Reading image to align : " << imFilename << endl; 
  Mat im = imread(imFilename);

  // Registered image will be resotred in imReg. 
  // The estimated homography will be stored in h. 
  Mat imReg, h;

  // Align images
  cout << "Aligning images ..." << endl; 
  alignImages(im, imReference, imReg, h);

  // Write aligned image to disk. 
  string outFilename("aligned.jpg");
  cout << "Saving aligned image : " << outFilename << endl; 
  imwrite(outFilename, imReg);

  // Print estimated homography
  cout << "Estimated homography : \n" << h << endl; 
}
...