Я не знаю точно, что ты задумал, но ты мог бы сделать это менее сложным.
Использование by
позволяет избежать необходимости изменять ваши данные, разделяет ваши данные, например, по идентификатору клиента, как в вашем случае, и применяет функцию к подмножествам (т. Е. Это комбинация split
и lapply
; см. ?by
).
Поскольку вы хотите каким-то образом сравнить подгонянные и прогнозируемые значения в своем результате, вам, вероятно, потребуется predict
, а не $fitted.values
, в противном случае значения не будут иметь одинаковую длину. Поскольку ваша независимая переменная - это дата в недельных интервалах, вы можете использовать seq.Date
и принять первую дату в качестве начального значения; последовательность имеет фактические значения длины (nrow
для каждого клиента) плюс h=
аргумент forecast
.
. Для демонстрации я добавляю подогнанные значения в качестве первого столбца в следующем.
res <- by(dat, dat$cus_key, function(x) {
H <- 20 ## globally define 'h'
fit <- lm(sales ~ date, x)
fitted <- fit$fitted.values
pred <- predict(fit, newdata=data.frame(
date=seq(x$date[1], length.out= nrow(x) + H, by="week")))
fcst <- c(fitted, forecast(fitted, h=H)$mean)
fit.na <- `length<-`(unname(fitted), length(pred)) ## for demonstration
return(cbind(fit.na, pred, fcst))
})
Результат
res
# dat$cus_key: A28
# fit.na pred fcst
# 1 41.4 41.4 41.4
# 2 47.4 47.4 47.4
# 3 53.4 53.4 53.4
# 4 59.4 59.4 59.4
# 5 65.4 65.4 65.4
# 6 NA 71.4 71.4
# 7 NA 77.4 77.4
# 8 NA 83.4 83.4
# 9 NA 89.4 89.4
# 10 NA 95.4 95.4
# 11 NA 101.4 101.4
# 12 NA 107.4 107.4
# 13 NA 113.4 113.4
# 14 NA 119.4 119.4
# 15 NA 125.4 125.4
# 16 NA 131.4 131.4
# 17 NA 137.4 137.4
# 18 NA 143.4 143.4
# 19 NA 149.4 149.4
# 20 NA 155.4 155.4
# 21 NA 161.4 161.4
# 22 NA 167.4 167.4
# 23 NA 173.4 173.4
# 24 NA 179.4 179.4
# 25 NA 185.4 185.4
# ----------------------------------------------------------------
# dat$cus_key: B16
# fit.na pred fcst
# 1 49.0 49.0 49.0
# 2 47.7 47.7 47.7
# 3 46.4 46.4 46.4
# 4 45.1 45.1 45.1
# 5 43.8 43.8 43.8
# 6 NA 42.5 42.5
# 7 NA 41.2 41.2
# 8 NA 39.9 39.9
# 9 NA 38.6 38.6
# 10 NA 37.3 37.3
# 11 NA 36.0 36.0
# 12 NA 34.7 34.7
# 13 NA 33.4 33.4
# 14 NA 32.1 32.1
# 15 NA 30.8 30.8
# 16 NA 29.5 29.5
# 17 NA 28.2 28.2
# 18 NA 26.9 26.9
# 19 NA 25.6 25.6
# 20 NA 24.3 24.3
# 21 NA 23.0 23.0
# 22 NA 21.7 21.7
# 23 NA 20.4 20.4
# 24 NA 19.1 19.1
# 25 NA 17.8 17.8
# ----------------------------------------------------------------
# dat$cus_key: C12
# fit.na pred fcst
# 1 56.4 56.4 56.4
# 2 53.2 53.2 53.2
# 3 50.0 50.0 50.0
# 4 46.8 46.8 46.8
# 5 43.6 43.6 43.6
# 6 NA 40.4 40.4
# 7 NA 37.2 37.2
# 8 NA 34.0 34.0
# 9 NA 30.8 30.8
# 10 NA 27.6 27.6
# 11 NA 24.4 24.4
# 12 NA 21.2 21.2
# 13 NA 18.0 18.0
# 14 NA 14.8 14.8
# 15 NA 11.6 11.6
# 16 NA 8.4 8.4
# 17 NA 5.2 5.2
# 18 NA 2.0 2.0
# 19 NA -1.2 -1.2
# 20 NA -4.4 -4.4
# 21 NA -7.6 -7.6
# 22 NA -10.8 -10.8
# 23 NA -14.0 -14.0
# 24 NA -17.2 -17.2
# 25 NA -20.4 -20.4
Как видите, прогноз и прогноз дают одинаковые значения, поскольку в этом случае оба метода основаны на одной и той же объясняющей переменной date
.
Данные об игрушке:
set.seed(42)
dat <- transform(expand.grid(cus_key=paste0(LETTERS[1:3], sample(12:43, 3)),
date=seq.Date(as.Date("2018-05-13"), length.out=5, by="week")),
sales=sample(20:80, 15, replace=TRUE))