Я пытаюсь реализовать метод Quasi Newton для оптимизации функции. код до сих пор имеет две проблемные c проблемы, которые я указал в скрипте (где нужно вычислить альфа, а также обновить B и Binve), может кто-нибудь помочь мне реализовать формулы, упомянутые в Optimization_problem так что я могу запустить скрипт успешно. Вот что у меня так далеко. Большое спасибо!
clc;clear;
% objective function, its gradient and Hessian
f = @(x1,x2) -4*x1 - 2*x2 - x1.^2 + 2*x1.^4 - 2*x1.*x2 + 3*x2.^2;
Gradient = @(x) [-4-2*x(1)+8*x(1)^3-2*x(2); -2-2*x(1)+6*x(2);];
%Hessian = @(x) [-2+24*x(1)^2, -2; -2; 6];
% plot contour lines
[X, Y] = meshgrid(-0.25:0.01:1.75, -0.25:0.0025:1.75);
contour(X,Y,f(X,Y),[-4.34 -4.3 -4.2 -4.1 -4.0 -3 -2 -1 0],'ShowText','On'), hold on;
grid on;
% initialization
x0 = [0; 0;];
df0 = Gradient(x0);
B = eye(2);
invB = eye(2);
% store intermediate points
Xs(:,1) = x0;
for i = 1:500
% compute step size "alpha"
%
% %% problematic part
% update x
x1 = x0 - alpha*invB*df0;
df1 = Gradient(x1);
fprintf('It. %i: f(%e,%e) = %e.\n', i, x1(1), x1(2), f(x1(1),x1(2)));
Xs(:,i+1) = x1;
% check the stopping criterion.
if norm(x1-x0)/norm(x1)<1e-4
break;
end
% update B and invB
%
%problematic part
%
% update x0 and df0
x0 = x1;
df0 = df1;
end
plot(Xs(1,:), Xs(2,:),'o-');
daspect([1 1 1]);
hold off;