Я пытаюсь построить архитектуру CNN для встраивания Word. Я пытаюсь объединить два тензора с помощью torch.cat, но он выдает эту ошибку:
22 print(z1.size())
---> 23 zcat = torch.cat(lz, dim = 2)
24 print("zcat",zcat.size())
25 zcat2=zcat.reshape([batch_size, 1, 100, 3000])
RuntimeError: Expected object of backend CUDA but got backend CPU for sequence element 1 in sequence argument at position #1 'tensors'
Прикрепление архитектуры также для справки:
def __init__(self,vocab_size,embedding_dm,pad_idx):
super().__init__()
self.embedding = nn.Embedding(vocab_size,embedding_dim,padding_idx = pad_idx)
self.convs = nn.ModuleList([nn.Conv2d(in_channels = 1,out_channels = 50,kernel_size = (1,fs)) for fs in (3,4,5)])
self.conv2 = nn.Conv2d(in_channels = 50,out_channels = 100,kernel_size = (1,2))
self.fc1 = nn.Linear(100000,150) #Change this
self.fc2 = nn.Linear(150,1)
self.dropout = nn.Dropout(0.5)
def forward(self,text):
print("text",text.size())
embedded = self.embedding(text.T)
embedded = embedded.permute(0, 2,1)
print("embedded",embedded.size())
x=embedded.size(2)
y=3000-x
print(y,"hello")
batch_size=embedded.size(0)
z=np.zeros((batch_size,100,y))
z1=torch.from_numpy(z).float()
lz=[embedded,z1]
print(z1.size())
zcat = torch.cat(lz, dim = 2)
print("zcat",zcat.size())
zcat2=zcat.reshape([batch_size, 1, 100, 3000])
print("zcat2",zcat2.size())
# embedded = embedded.reshape([embedded.shape[0],1,])
print(embedded.size(),"embedding")
conved = [F.relu(conv(embedded)) for conv in self.convs]
pooled = [F.max_pool2d(conv,(1,2)) for conv in conved]
print("Pool")
for pl in pooled:
print(pl.size())
cat = torch.cat(pooled,dim = 3)
print("cat",cat.size())
conved2 = F.relu(self.conv2(cat))
print("conved2",conved2.size())
pooled2 = F.max_pool2d(conved2,(1,2))
print(pooled2.size(),"pooled2")
return 0
# return pooled2
Я что-то не так делаю? Помощь оценена. Спасибо!