Настройка базы данных воздушного потока - PullRequest
0 голосов
/ 06 февраля 2020

В последнее время мы столкнулись с множеством проблем, связанных с базой данных Airflow в нашей настройке. Один, когда зашел в тупик (два запроса пытаются получить индексы в таблице task_instance), а другой, когда в журналах указано «Слишком много открытых соединений» со стороны Airflow. Мы используем celery executor, бэкэнд которого также совпадает с бэкендом воздушного потока. В настоящее время у нас есть только одна группа DAG с примерно 30-40 параллельными задачами и SubDAG с вложенностью 3-4 уровня. Большинство из этих задач легковесны, они выполняют асинхронный c вызов микросервиса и ждут, пока он не завершится sh (как датчик). У нас может быть около 15-20 таких DAG, работающих одновременно. Наш экземпляр БД - t3.medium. Файл airflow.cfg:

[core]
# The folder where your airflow pipelines live, most likely a
# subfolder in a code repository
# This path must be absolute
dags_folder = /home/ubuntu/airflow-local-user/airflow_home/dags2

# The folder where airflow should store its log files
# This path must be absolute
base_log_folder = /home/ubuntu/airflow-local-user/airflow_home/logs

# Airflow can store logs remotely in AWS S3, Google Cloud Storage or Elastic Search.
# Users must supply an Airflow connection id that provides access to the storage
# location. If remote_logging is set to true, see UPDATING.md for additional
# configuration requirements.
remote_logging = False
remote_log_conn_id =
remote_base_log_folder =
encrypt_s3_logs = False

# Logging level
logging_level = INFO
fab_logging_level = WARN

# Logging class
# Specify the class that will specify the logging configuration
# This class has to be on the python classpath
# logging_config_class = my.path.default_local_settings.LOGGING_CONFIG
logging_config_class =

# Log format
# Colour the logs when the controlling terminal is a TTY.
colored_console_log = True
colored_log_format = [%%(blue)s%%(asctime)s%%(reset)s] {%%(blue)s%%(filename)s:%%(reset)s%%(lineno)d} %%(log_color)s%%(levelname)s%%(reset)s - %%(log_color)s%%(message)s%%(reset)s
colored_formatter_class = airflow.utils.log.colored_log.CustomTTYColoredFormatter

log_format = [%%(asctime)s] {%%(filename)s:%%(lineno)d} %%(levelname)s - %%(message)s
simple_log_format = %%(asctime)s %%(levelname)s - %%(message)s

# Log filename format
log_filename_template = {{ ti.dag_id }}/{{ ti.task_id }}/{{ ts }}/{{ try_number }}.log
log_processor_filename_template = {{ filename }}.log
dag_processor_manager_log_location = /home/ubuntu/airflow-local-user/airflow_home/logs/dag_processor_manager/dag_processor_manager.log

# Hostname by providing a path to a callable, which will resolve the hostname
# The format is "package:function". For example,
# default value "socket:getfqdn" means that result from getfqdn() of "socket" package will be used as hostname
# No argument should be required in the function specified.
# If using IP address as hostname is preferred, use value "airflow.utils.net:get_host_ip_address"
hostname_callable = socket:getfqdn

# Default timezone in case supplied date times are naive
# can be utc (default), system, or any IANA timezone string (e.g. Europe/Amsterdam)
default_timezone = utc

# The executor class that airflow should use. Choices include
# SequentialExecutor, LocalExecutor, CeleryExecutor, DaskExecutor, KubernetesExecutor
executor = CeleryExecutor

# The SqlAlchemy connection string to the metadata database.
# SqlAlchemy supports many different database engine, more information
# their website
sql_alchemy_conn = mysql://username:password@jaguar-mr-mds.cj9zq8oequpw.us-west-2.rds.amazonaws.com:3306/airflow

# The encoding for the databases
sql_engine_encoding = utf-8

# If SqlAlchemy should pool database connections.
sql_alchemy_pool_enabled = True

# The SqlAlchemy pool size is the maximum number of database connections
# in the pool. 0 indicates no limit.
sql_alchemy_pool_size = 5

# The maximum overflow size of the pool.
# When the number of checked-out connections reaches the size set in pool_size,
# additional connections will be returned up to this limit.
# When those additional connections are returned to the pool, they are disconnected and discarded.
# It follows then that the total number of simultaneous connections the pool will allow is pool_size + max_overflow,
# and the total number of "sleeping" connections the pool will allow is pool_size.
# max_overflow can be set to -1 to indicate no overflow limit;
# no limit will be placed on the total number of concurrent connections. Defaults to 10.
sql_alchemy_max_overflow = 10

# The SqlAlchemy pool recycle is the number of seconds a connection
# can be idle in the pool before it is invalidated. This config does
# not apply to sqlite. If the number of DB connections is ever exceeded,
# a lower config value will allow the system to recover faster.
sql_alchemy_pool_recycle = 1800

# How many seconds to retry re-establishing a DB connection after
# disconnects. Setting this to 0 disables retries.
sql_alchemy_reconnect_timeout = 300

# The schema to use for the metadata database
# SqlAlchemy supports databases with the concept of multiple schemas.
sql_alchemy_schema =

# The amount of parallelism as a setting to the executor. This defines
# the max number of task instances that should run simultaneously
# on this airflow installation
parallelism = 32

# The number of task instances allowed to run concurrently by the scheduler
dag_concurrency = 16

# Are DAGs paused by default at creation
dags_are_paused_at_creation = True

# The maximum number of active DAG runs per DAG
max_active_runs_per_dag = 16

# Whether to load the examples that ship with Airflow. It's good to
# get started, but you probably want to set this to False in a production
# environment
load_examples = False

# Where your Airflow plugins are stored
plugins_folder = /home/ubuntu/airflow-local-user/airflow_home/plugins

# Secret key to save connection passwords in the db
fernet_key = jZLcYYUUpUt8K26A9qlznu4E3yFb_Xn280dxp0yQVwM=

# Whether to disable pickling dags
donot_pickle = False

# How long before timing out a python file import while filling the DagBag
dagbag_import_timeout = 30

# The class to use for running task instances in a subprocess
task_runner = StandardTaskRunner

# If set, tasks without a `run_as_user` argument will be run with this user
# Can be used to de-elevate a sudo user running Airflow when executing tasks
default_impersonation =

# What security module to use (for example kerberos):
security =

# If set to False enables some unsecure features like Charts and Ad Hoc Queries.
# In 2.0 will default to True.
secure_mode = False

# Turn unit test mode on (overwrites many configuration options with test
# values at runtime)
unit_test_mode = False

# Name of handler to read task instance logs.
# Default to use task handler.
task_log_reader = task

# Whether to enable pickling for xcom (note that this is insecure and allows for
# RCE exploits). This will be deprecated in Airflow 2.0 (be forced to False).
enable_xcom_pickling = True

# When a task is killed forcefully, this is the amount of time in seconds that
# it has to cleanup after it is sent a SIGTERM, before it is SIGKILLED
killed_task_cleanup_time = 60

# Whether to override params with dag_run.conf. If you pass some key-value pairs through `airflow backfill -c` or
# `airflow trigger_dag -c`, the key-value pairs will override the existing ones in params.
dag_run_conf_overrides_params = False

# Worker initialisation check to validate Metadata Database connection
worker_precheck = False

# When discovering DAGs, ignore any files that don't contain the strings `DAG` and `airflow`.
dag_discovery_safe_mode = True

[webserver]
# The base url of your website as airflow cannot guess what domain or
# cname you are using. This is used in automated emails that
# airflow sends to point links to the right web server
base_url = http://10.0.1.180:9080

# The ip specified when starting the web server
web_server_host = 0.0.0.0

# The port on which to run the web server
web_server_port = 9080

# Paths to the SSL certificate and key for the web server. When both are
# provided SSL will be enabled. This does not change the web server port.
web_server_ssl_cert =
web_server_ssl_key =

# Number of seconds the webserver waits before killing gunicorn master that doesn't respond
web_server_master_timeout = 120

# Number of seconds the gunicorn webserver waits before timing out on a worker
web_server_worker_timeout = 120

# Number of workers to refresh at a time. When set to 0, worker refresh is
# disabled. When nonzero, airflow periodically refreshes webserver workers by
# bringing up new ones and killing old ones.
worker_refresh_batch_size = 1

# Number of seconds to wait before refreshing a batch of workers.
worker_refresh_interval = 300

# Secret key used to run your flask app
secret_key = temporary_key

# Number of workers to run the Gunicorn web server
workers = 4

# The worker class gunicorn should use. Choices include
# sync (default), eventlet, gevent
worker_class = sync

# Log files for the gunicorn webserver. '-' means log to stderr.
access_logfile = -
error_logfile = -

# Expose the configuration file in the web server
# This is only applicable for the flask-admin based web UI (non FAB-based).
# In the FAB-based web UI with RBAC feature,
# access to configuration is controlled by role permissions.
expose_config = True

# Set to true to turn on authentication:
# https://airflow.apache.org/security.html#web-authentication
authenticate = False

# Filter the list of dags by owner name (requires authentication to be enabled)
filter_by_owner = False

# Filtering mode. Choices include user (default) and ldapgroup.
# Ldap group filtering requires using the ldap backend
#
# Note that the ldap server needs the "memberOf" overlay to be set up
# in order to user the ldapgroup mode.
owner_mode = user

# Default DAG view.  Valid values are:
# tree, graph, duration, gantt, landing_times
dag_default_view = tree

# Default DAG orientation. Valid values are:
# LR (Left->Right), TB (Top->Bottom), RL (Right->Left), BT (Bottom->Top)
dag_orientation = LR

# Puts the webserver in demonstration mode; blurs the names of Operators for
# privacy.
demo_mode = False

# The amount of time (in secs) webserver will wait for initial handshake
# while fetching logs from other worker machine
log_fetch_timeout_sec = 5

# By default, the webserver shows paused DAGs. Flip this to hide paused
# DAGs by default
hide_paused_dags_by_default = False

# Consistent page size across all listing views in the UI
page_size = 100

# Use FAB-based webserver with RBAC feature
rbac = False

# Define the color of navigation bar
navbar_color = #007A87

# Default dagrun to show in UI
default_dag_run_display_number = 25

# Enable werkzeug `ProxyFix` middleware
enable_proxy_fix = False

# Set secure flag on session cookie
cookie_secure = False

# Set samesite policy on session cookie
cookie_samesite =

# Default setting for wrap toggle on DAG code and TI log views.
default_wrap = False

# Send anonymous user activity to your analytics tool
# analytics_tool = # choose from google_analytics, segment, or metarouter
# analytics_id = XXXXXXXXXXX

[celery]
# This section only applies if you are using the CeleryExecutor in
# [core] section above

# The app name that will be used by celery
celery_app_name = airflow.executors.celery_executor

# The concurrency that will be used when starting workers with the
# "airflow worker" command. This defines the number of task instances that
# a worker will take, so size up your workers based on the resources on
# your worker box and the nature of your tasks
worker_concurrency = 16

# The maximum and minimum concurrency that will be used when starting workers with the
# "airflow worker" command (always keep minimum processes, but grow to maximum if necessary).
# Note the value should be "max_concurrency,min_concurrency"
# Pick these numbers based on resources on worker box and the nature of the task.
# If autoscale option is available, worker_concurrency will be ignored.
# http://docs.celeryproject.org/en/latest/reference/celery.bin.worker.html#cmdoption-celery-worker-autoscale
# worker_autoscale = 16,12

# When you start an airflow worker, airflow starts a tiny web server
# subprocess to serve the workers local log files to the airflow main
# web server, who then builds pages and sends them to users. This defines
# the port on which the logs are served. It needs to be unused, and open
# visible from the main web server to connect into the workers.
worker_log_server_port = 8793

# The Celery broker URL. Celery supports RabbitMQ, Redis and experimentally
# a sqlalchemy database. Refer to the Celery documentation for more
# information.
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#broker-settings
#broker_url = sqla+mysql://airflow:airflow@localhost:3306/airflow
broker_url = pyamqp://username:password@10.0.1.42:5672/

# The Celery result_backend. When a job finishes, it needs to update the
# metadata of the job. Therefore it will post a message on a message bus,
# or insert it into a database (depending of the backend)
# This status is used by the scheduler to update the state of the task
# The use of a database is highly recommended
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#task-result-backend-settings
result_backend = db+mysql://username:password@jaguar-mr-mds.cj9zq8oequpw.us-west-2.rds.amazonaws.com:3306/airflow_celery

# Celery Flower is a sweet UI for Celery. Airflow has a shortcut to start
# it `airflow flower`. This defines the IP that Celery Flower runs on
flower_host = 0.0.0.0

# The root URL for Flower
# Ex: flower_url_prefix = /flower
flower_url_prefix =

# This defines the port that Celery Flower runs on
flower_port = 5555

# Securing Flower with Basic Authentication
# Accepts user:password pairs separated by a comma
# Example: flower_basic_auth = user1:password1,user2:password2
flower_basic_auth =

# Default queue that tasks get assigned to and that worker listen on.
default_queue = default

# How many processes CeleryExecutor uses to sync task state.
# 0 means to use max(1, number of cores - 1) processes.
sync_parallelism = 0

# Import path for celery configuration options
celery_config_options = airflow.config_templates.default_celery.DEFAULT_CELERY_CONFIG

# In case of using SSL
ssl_active = False
ssl_key =
ssl_cert =
ssl_cacert =

# Celery Pool implementation.
# Choices include: prefork (default), eventlet, gevent or solo.
# See:
#   https://docs.celeryproject.org/en/latest/userguide/workers.html#concurrency
#   https://docs.celeryproject.org/en/latest/userguide/concurrency/eventlet.html
pool = prefork

[celery_broker_transport_options]
# This section is for specifying options which can be passed to the
# underlying celery broker transport.  See:
# http://docs.celeryproject.org/en/latest/userguide/configuration.html#std:setting-broker_transport_options

# The visibility timeout defines the number of seconds to wait for the worker
# to acknowledge the task before the message is redelivered to another worker.
# Make sure to increase the visibility timeout to match the time of the longest
# ETA you're planning to use.
#
# visibility_timeout is only supported for Redis and SQS celery brokers.
# See:
#   http://docs.celeryproject.org/en/master/userguide/configuration.html#std:setting-broker_transport_options
#
#visibility_timeout = 21600

[scheduler]
# Task instances listen for external kill signal (when you clear tasks
# from the CLI or the UI), this defines the frequency at which they should
# listen (in seconds).
job_heartbeat_sec = 2

# The scheduler constantly tries to trigger new tasks (look at the
# scheduler section in the docs for more information). This defines
# how often the scheduler should run (in seconds).
scheduler_heartbeat_sec = 2

# after how much time should the scheduler terminate in seconds
# -1 indicates to run continuously (see also num_runs)
run_duration = -1

# after how much time (seconds) a new DAGs should be picked up from the filesystem. Original Value : 5
min_file_process_interval = 5 

# How often (in seconds) to scan the DAGs directory for new files. Default to 5 minutes.
dag_dir_list_interval = 5

# How often should stats be printed to the logs
print_stats_interval = 30

# If the last scheduler heartbeat happened more than scheduler_health_check_threshold ago (in seconds),
# scheduler is considered unhealthy.
# This is used by the health check in the "/health" endpoint
scheduler_health_check_threshold = 30

child_process_log_directory = /home/ubuntu/airflow-local-user/airflow_home/logs/scheduler

# Local task jobs periodically heartbeat to the DB. If the job has
# not heartbeat in this many seconds, the scheduler will mark the
# associated task instance as failed and will re-schedule the task.
scheduler_zombie_task_threshold = 300

# Turn off scheduler catchup by setting this to False.
# Default behavior is unchanged and
# Command Line Backfills still work, but the scheduler
# will not do scheduler catchup if this is False,
# however it can be set on a per DAG basis in the
# DAG definition (catchup)
catchup_by_default = True

# This changes the batch size of queries in the scheduling main loop.
# If this is too high, SQL query performance may be impacted by one
# or more of the following:
#  - reversion to full table scan
#  - complexity of query predicate
#  - excessive locking
#
# Additionally, you may hit the maximum allowable query length for your db.
#
# Set this to 0 for no limit (not advised)
max_tis_per_query = 512

# Statsd (https://github.com/etsy/statsd) integration settings
statsd_on = False
statsd_host = localhost
statsd_port = 8125
statsd_prefix = airflow

# The scheduler can run multiple threads in parallel to schedule dags.
# This defines how many threads will run.
max_threads = 3

authenticate = False

# Turn off scheduler use of cron intervals by setting this to False.
# DAGs submitted manually in the web UI or with trigger_dag will still run.
use_job_schedule = False

#min_file_parsing_loop_time=3600

Так что любые рекомендации будут оценены.

1 Ответ

0 голосов
/ 10 февраля 2020

У нас были взаимоблокировки, связанные с установкой по умолчанию автоматической фиксации False. В зависимости от ваших требований это может создать излишне длительные транзакции: если вы выполняете несколько операторов с использованием одного и того же курсора, все выполнения будут частью транзакции, что увеличивает риск тупика.

Ниже приведен пример с SQL Серверный хук, но я подозреваю, что он будет аналогичным для других хуков.

hook = MsSqlHook(mssql_conn_id="detbds")
with hook.get_conn() as conn:
    conn.autocommit = True
    cursor = conn.cursor()

Это решило / сняло риск тупика в этом конкретном c случае. Ваш пробег может варьироваться в зависимости от требований.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...