Правда, строго говоря, добавление параметра size=(n, m)
не работает. Но size=(m, n)
делает!
Как правило, в numpy
размерах число строк идет первым.
>>> numpy.random.triangular(left=p1, mode=p2, right=p3, size=(10, 4))
array([[2.90526206, 3.90549642, 4.17820463, 4.49103927],
[4.128539 , 5.64750789, 4.2343925 , 4.14951323],
[4.55117141, 4.18380231, 4.94283228, 4.17310084],
[3.7047425 , 6.19969199, 3.9318881 , 4.73317286],
[5.0613046 , 4.88435654, 4.04345036, 4.41236136],
[3.6946254 , 2.28868213, 4.29268451, 4.61406735],
[4.26315216, 3.84219428, 4.79651309, 4.02510467],
[3.1213574 , 3.87407067, 4.20976142, 4.11963155],
[2.89005644, 4.43081604, 5.96604977, 4.0194683 ],
[5.28800737, 3.80200832, 4.45966515, 4.46419704]])
Это можно обобщить для массивов, которые передают более сложным образом. Вот пример, который создает четыре отдельных выборки массива 2x2x2 на основе широковещательных параметров. Обратите внимание, что опять-таки первое значение - это количество образцов, а остальные описывают форму каждого образца:
>>> numpy.random.triangular(a[:, None, None],
... a[None, :, None] + 2,
... a[None, None, :] + 4,
... size=(4, 2, 2, 2))
array([[[[1.96335621, 1.88351682],
[2.27347214, 3.23075503]],
[[2.53612351, 2.33322979],
[2.73651868, 2.7414705 ]]],
[[[3.80046148, 3.83468891],
[3.43258814, 3.33174839]],
[[3.05200913, 4.47039698],
[2.89013357, 1.99638614]]],
[[[1.91325759, 2.64773446],
[1.73132514, 3.47843725]],
[[1.88526414, 2.86937885],
[3.12001437, 1.58742945]]],
[[[0.58692663, 1.08249125],
[3.4744866 , 1.95300333]],
[[1.72887756, 2.68527515],
[1.95189437, 4.49416249]]]])