я следую этим урокам https://towardsdatascience.com/evaluate-topic-model-in-python-latent-dirichlet-allocation-lda-7d57484bb5d0 и нахожу проблему. поэтому моя цель в этом коде состоит в том, чтобы сделать его итерацией по диапазону тем, значений альфа и бета параметров. так что я могу определить оптимальное количество тем из оценки когерентности, сгенерированной альфа и бета
def compute_coherence_values(corpus, dictionary, k, a, b):
lda_model = gensim.models.LdaMulticore(corpus=corpus,
id2word=id2word,
num_topics=10,
random_state=100,
chunksize=100,
passes=10,
alpha=a,
eta=b,
per_word_topics=True)
coherence_model_lda = CoherenceModel(model=lda_model, texts=data_lemmatized, dictionary=id2word, coherence='c_v')
return coherence_model_lda.get_coherence()
, а затем
import numpy as np
import tqdm
grid = {}
grid['Validation_Set'] = {}
# Topics range
min_topics = 2
max_topics = 11
step_size = 1
topics_range = range(min_topics, max_topics, step_size)
# Alpha parameter
alpha = list(np.arange(0.01, 1, 0.3))
alpha.append('symmetric')
alpha.append('asymmetric')
# Beta parameter
beta = list(np.arange(0.01, 1, 0.3))
beta.append('symmetric')
# Validation sets
num_of_docs = len(corpus)
corpus_sets = [# gensim.utils.ClippedCorpus(corpus, num_of_docs*0.25),
# gensim.utils.ClippedCorpus(corpus, num_of_docs*0.5),
gensim.utils.ClippedCorpus(corpus, num_of_docs*0.75),
corpus]
corpus_title = ['75% Corpus', '100% Corpus']
model_results = {'Validation_Set': [],
'Topics': [],
'Alpha': [],
'Beta': [],
'Coherence': []
}
# Can take a long time to run
if 1 == 1:
pbar = tqdm.tqdm(total=540)
# iterate through validation corpuses
for i in range(len(corpus_sets)):
# iterate through number of topics
for k in topics_range:
# iterate through alpha values
for a in alpha:
# iterare through beta values
for b in beta:
# get the coherence score for the given parameters
cv = compute_coherence_values(corpus=corpus_sets[i], dictionary=id2word,
k=k, a=a, b=b)
# Save the model results
model_results['Validation_Set'].append(corpus_title[i])
model_results['Topics'].append(k)
model_results['Alpha'].append(a)
model_results['Beta'].append(b)
model_results['Coherence'].append(cv)
pbar.update(1)
pd.DataFrame(model_results).to_csv('lda_tuning_results.csv', index=False)
pbar.close()
выйдет эта ошибка ValueError: Stop аргумент для islice () должно быть None или целым числом: 0 <= x <= sys.maxsize. </strong>