Проблема с запуском Tensorflow Transformer Tutorial - PullRequest
0 голосов
/ 27 марта 2020

Я проверял учебное пособие TensorFlow «Модель трансформера для понимания языка» и скопировал код в точности так, как он есть, в мою среду Spyder 4. Тем не менее код показывает следующую ошибку при запуске:

AttributeError: 'RepeatedCompositeFieldContainer' object has no attribute 'append'

Я проверил код и понял, что ошибка происходит из функции вызова класса MultiHeadAttention. Однако я не понимаю, в чем проблема, поскольку код отлично работает в записной книжке Colab.

class MultiHeadAttention(tf.keras.layers.Layer):


  def __init__(self, d_model, num_heads):
    super(MultiHeadAttention, self).__init__()
    self.num_heads = num_heads
    self.d_model = d_model

    assert d_model % self.num_heads == 0

    self.depth = d_model // self.num_heads

    self.wq = tf.keras.layers.Dense(d_model)
    self.wk = tf.keras.layers.Dense(d_model)
    self.wv = tf.keras.layers.Dense(d_model)

    self.dense = tf.keras.layers.Dense(d_model)



def split_heads(self, x, batch_size):
    """Split the last dimension into (num_heads, depth).
    Transpose the result such that the shape is (batch_size, num_heads, seq_len, depth)
    """
    x = tf.reshape(x, (batch_size, -1, self.num_heads, self.depth))
    return tf.transpose(x, perm=[0, 2, 1, 3])

def call(self, v, k, q, mask):
    batch_size = tf.shape(q)[0]

    q = self.wq(q)  # (batch_size, seq_len, d_model)
    k = self.wk(k)  # (batch_size, seq_len, d_model)
    v = self.wv(v)  # (batch_size, seq_len, d_model)

    q = self.split_heads(q, batch_size)  # (batch_size, num_heads, seq_len_q, depth)
    k = self.split_heads(k, batch_size)  # (batch_size, num_heads, seq_len_k, depth)
    v = self.split_heads(v, batch_size)  # (batch_size, num_heads, seq_len_v, depth)

    # scaled_attention.shape == (batch_size, num_heads, seq_len_q, depth)
    # attention_weights.shape == (batch_size, num_heads, seq_len_q, seq_len_k)
    scaled_attention, attention_weights = scaled_dot_product_attention(
        q, k, v, mask)

    scaled_attention = tf.transpose(scaled_attention, perm=[0, 2, 1, 3])  # (batch_size, seq_len_q, 
        num_heads, depth)

    concat_attention = tf.reshape(scaled_attention, 
                              (batch_size, -1, self.d_model))  # (batch_size, seq_len_q, d_model)

    output = self.dense(concat_attention)  # (batch_size, seq_len_q, d_model)

    return output, attention_weights

Ошибка отображается при выполнении строки q = self.wq(q) в функции вызова. Любая помощь будет оценена.

Заранее спасибо.

...