Я довольно новичок в Python и совершенно новичок в многопроцессорности. Я нашел в Интернете несколько учебных пособий, которые помогут мне понять пакет многопроцессорности.
В моем коде есть набор дифференциальных уравнений с использованием метода RungeKutta4, и я Мне нужно выполнить кучу вычислений с различными начальными условиями.
Сам код работает, но без многопроцессорной обработки это занимает много времени до окончания sh, и я подумал, что было бы идеально использовать параллелизацию, потому что вычисления независимы ... .
Кстати, я использую Anaconda в качестве IDE ..
Поэтому я использовал
import multiprocessing as mp
iterations = np.arange(start,end,step)
pool = mp.Pool(mp.cpu_count()) # Step 1: Init multiprocessing.Pool()
results = pool.map(rungeKutta4, [k for k in iterations]) # Step 2: apply pool map
pool.close() # Step 3: close
Когда я запускаю его в Anaconda, я не получаю сообщение об ошибке, он начинает вычислять, но это никогда не останавливается .... Где я go не так?
Заранее спасибо за помощь ...
Лучший
РЕДАКТИРОВАТЬ: я добавил весь код здесь ...
# Python program to implement Runge Kutta method
# Markus Schmid
# 2020 Appalachian State University
# jupyter nbconvert --to python FILENAME.ipynb
# y" + 2*beta*y' + w0*sin(y) = A + B*cos(w*t)
# Import used libraries
import numpy as np
import math
import matplotlib.pyplot as plt
import time
from matplotlib import rc
rc('font',**{'family':'sans-serif','sans-serif':['Helvetica']})
rc('text', usetex=True)
import multiprocessing as mp
print("Number of processors: ", mp.cpu_count())
# list for time (x axis) and result (y axis)
result = []
w0 = 10 # undamped angular frequency of the oscillator
beta = 1
B = 1
A = 0
B = 10
w = 4
theta_init = 0
theta_end = 20
theta_step = 0.1
# initial conditions
t0 = 0
y0 = 0
z0 = 0
t_final = 20 # final time
h = 0.01 # fixed step size
n = (int)((t_final - t0)/h) # datapoints per RK4 iteration
# define functions
def funcf(t, y, z):
return (z)
def funcg(t, y, z):
return (A+B*math.cos(w*t) - 2*beta*z - w0*math.sin(y))
# Finds value of y for a given x using step size h
# and initial value y0 at x0.
def rungeKutta4(y):
# Count number of iterations using step size or
# step height h
t = t0
z = z0
n = (int)((t_final - t)/h)
for i in range(1, n + 1):
# Apply Runge Kutta to find next value of y
k1 = h * funcf(t, y, z)
l1 = h * funcg(t, y, z)
k2 = h * funcf(t + 0.5 * h, y + 0.5 * k1, z + 0.5 * l1)
l2 = h * funcg(t + 0.5 * h, y + 0.5 * k1, z + 0.5 * l1)
k3 = h * funcf(t + 0.5 * h, y + 0.5 * k2, z + 0.5 * l2)
l3 = h * funcg(t + 0.5 * h, y + 0.5 * k2, z + 0.5 * l2)
k4 = h * funcf(t + h, y + k3, z + l3)
l4 = h * funcg(t + h, y + k3, z + l3)
# Update next value of y
y = y + (1.0 / 6.0)*(k1 + 2 * k2 + 2 * k3 + k4)
z = z + (1.0 / 6.0)*(l1 + 2 * l2 + 2 * l3 + l4)
#result.append(y)
t = t + h # Update next value of t
return y
iterations = np.arange(theta_init,theta_end+theta_step,theta_step) # number iterations for omega sweep
start_time = time.time()
#for k in iterations: # for serial calculation
# rungeKutta4(k)
pool = mp.Pool(mp.cpu_count()) # Step 1: Init multiprocessing.Pool()
results = pool.map(rungeKutta4, [k for k in iterations]) # Step 2: apply pool map
end_time = time.time()
pool.close() # Step 3: close
print ("The program took", end_time - start_time, "s to run")
#table = np.array(result).reshape(len(iterations),n) # rearrange array, 1 row is const. theta0
timer = np.arange(t0,t_final,h) # time array