Итеративное углубление Поиск K-головоломки - PullRequest
1 голос
/ 03 марта 2020

Я пытаюсь реализовать итеративный поиск углубления для k - головоломки. Мне удалось найти целевой узел. Однако я не могу вернуться от целевого узла к начальному узлу, чтобы найти оптимальные ходы. Я думаю, что это как-то связано с повторяющимися состояниями в IDS. В настоящее время я отслеживаю все посещенные состояния в алгоритме IDS.

Это текущая реализация моего алгоритма. В приведенном ниже коде moves_dict хранит предыдущее состояние каждого узла и переходит в текущее состояние.

import os
import sys
from itertools import chain
from collections import deque

# Iterative Deepening Search (IDS)
class Node:
    def __init__(self, state, empty_pos = None, depth = 0):
        self.state = state
        self.depth = depth
        self.actions = ["UP", "DOWN", "LEFT", "RIGHT"]

        if empty_pos is None:
            self.empty_pos = self.find_empty_pos(self.state)
        else:
            self.empty_pos = empty_pos

def find_empty_pos(self, state):
    for x in range(n):
        for y in range(n):
            if state[x][y] == 0:
                return (x, y)


def find_empty_pos(self, state):
    for x in range(n):
        for y in range(n):
            if state[x][y] == 0:
                return (x, y)

def do_move(self, move):
    if move == "UP":
        return self.up()
    if move == "DOWN":
        return self.down()
    if move == "LEFT":
        return self.left()
    if move == "RIGHT":
        return self.right()

def swap(self, state, (x1, y1), (x2, y2)):
    temp = state[x1][y1]
    state[x1][y1] = state[x2][y2]
    state[x2][y2] = temp

def down(self):
    empty = self.empty_pos

    if (empty[0] != 0):
        t = [row[:] for row in self.state]
        pos = (empty[0] - 1, empty[1])
        self.swap(t, pos, empty)

        return t, pos
    else:
        return self.state, empty

def up(self):
    empty = self.empty_pos

    if (empty[0] != n - 1):
        t = [row[:] for row in self.state]
        pos = (empty[0] + 1 , empty[1])
        self.swap(t, pos, empty)

        return t, pos
    else:
        return self.state, empty

def right(self):
    empty = self.empty_pos

    if (empty[1] != 0):
        t = [row[:] for row in self.state]
        pos = (empty[0] , empty[1] - 1)
        self.swap(t, pos, empty)

        return t, pos
    else:
        return self.state, empty

def left(self):
    empty = self.empty_pos

    if (empty[1] != n - 1):
        t = [row[:] for row in self.state]
        pos = (empty[0] , empty[1] + 1)
        self.swap(t, pos, empty)

        return t, pos
    else:
        return self.state, empty

class Puzzle(object):
    def __init__(self, init_state, goal_state):
        self.init_state = init_state
        self.state = init_state
        self.goal_state = goal_state
        self.total_nodes = 1
        self.total_visited = 0
        self.max_frontier = 0
        self.depth = 0
        self.visited = {}
        self.frontier_node = []
        self.move_dict = {}

def is_goal_state(self, node):
    return node.state == self.goal_state

def is_solvable(self):
    flat_list = list(chain.from_iterable(self.init_state))
    num_inversions = 0

    for i in range(max_num):
        current = flat_list[i]

        for j in range(i + 1, max_num + 1):
            next = flat_list[j]

            if current > next and next != 0:
                num_inversions += 1

    if n % 2 != 0 and num_inversions % 2 == 0:
        return True
    elif n % 2 == 0:
        row_with_blank = n - flat_list.index(0) // n

        return (row_with_blank % 2 == 0) == (num_inversions % 2 != 0)
    else:
        return False

def succ(self, node, frontier):
    succs = deque()
    node_str = str(node.state)

    self.visited[node_str] = node.depth


    self.total_visited += 1
    frontier -= 1

    for m in node.actions:
        transition, t_empty = node.do_move(m)
        transition_str = str(transition)
        transition_depth = node.depth + 1

        if transition_str not in self.visited or transition_depth < self.visited[transition_str]:
            self.total_nodes += 1
            transition_depth = node.depth + 1
            transition_str = str(transition)
            self.move_dict[transition_str] = (node_str, m)
            succs.append(Node(transition, t_empty, transition_depth))
            frontier += 1


    return succs , frontier



def depth_limited(self, node, depth, frontier):
    if self.is_goal_state(node):
        return node
    if node.depth >= depth:
        return None

    succs, frontier = self.succ(node, frontier)
    self.max_frontier = max(self.max_frontier, frontier)

    while succs:
       result = self.depth_limited(succs.popleft(), depth, frontier)

       if result is not None:
            return result

    return None

def solve(self):
    if not self.is_solvable():
        return ["UNSOLVABLE"]

    goal_node = None

    while goal_node is None:
        goal_node = self.depth_limited(Node(self.init_state), self.depth, 1)

        if goal_node is not None:
            break

        # reset statistics
        self.visited = {}
        self.total_nodes = 1
        self.move_dict = {}

        self.depth += 1

        print self.depth

    print "out"
    print goal_node.state
    solution = deque()
    init_str = str(self.init_state)
    current_str = str(goal_node.state)
    while current_str != init_str:
        current_str, move = self.move_dict[current_str]
        solution.appendleft(move)

    print "Total number of nodes generated: " + str(self.total_nodes)
    print "Total number of nodes explored: " + str(self.total_visited)
    print "Maximum number of nodes in frontier: " + str(self.max_frontier)
    print "Solution depth: " + str(self.depth)
    return solution

Я уже некоторое время ломаю голову. Я использую hashMap, который отображает строку состояния на ее глубину, и когда добавляет узел, когда такое же состояние появляется на меньшей глубине

EDIT Оптимальная глубина решения для этого теста составляет 22. init состояние: [[1,8,3],[5,2,4],[0,7,6]] состояние цели: [[1,2,3],[4,5,6],[7,8,0]]

1 Ответ

1 голос
/ 03 марта 2020

Я не собираюсь реализовывать вашу загадку k, но рассмотрим следующий источник данных

d = {'A':{'B':{'Z':7,'Q':9},'R':{'T':0}},'D':{'G':1}}

def find_node(search_space,target,path_so_far=None):
    if not path_so_far: # empty path to start
        path_so_far = []
    for key,value in search_space.items():
        if value == target:
           # found the value return the path
           return path_so_far+[key]
        else:
           # pass the path so far down to the next step of the search space
           result = find_node(search_space[key],target,  path_so_far+[key])
           if result:
              print("Found Path:",result)
              return result
...