Вот моя модель создания:
import tensorflow as tf
from tensorflow.keras.layers import Conv2D, MaxPooling2D, Dense, Dropout, Flatten, Activation
model = tf.keras.models.Sequential()
model.add(Conv2D(40, kernel_size=5, padding="same",input_shape=(300, 300, 1), activation = 'relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(70, kernel_size=3, padding="same", activation = 'relu'))
model.add(Conv2D(500, kernel_size=3, padding="same", activation = 'relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Conv2D(1024, kernel_size=3, padding="valid", activation = 'relu'))
model.add(MaxPooling2D(pool_size=(2, 2), strides=(2, 2)))
model.add(Dense(units=100, activation='relu' ))
model.add(Dropout(0.8))
model.add(Dense(2))
model.add(Activation("softmax"))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
optim = "adam"
model.compile(optimizer=optim,
loss='categorical_crossentropy',
metrics=['accuracy'])
train = train_data[:858]
test = train_data[859:]
X = np.array([i[0] for i in train]).reshape(-1,IMG_SIZE,IMG_SIZE,1)
Y = [i[1] for i in train]
Y=np.array(Y)
print(X.shape)
(858, 300, 300, 1)
model.fit(X, Y, epochs=1)
Вот мое сообщение об ошибке: Любая помощь будет принята с благодарностью.
Спасибо Кроме того, мой размер изображения составляет 300 --- -------------------------------------------------- ----------------------
ValueError Traceback (most recent call last)
<ipython-input-131-d4fc87229b94> in <module>()
----> 1 model.fit(X, Y, epochs=1)
3 frames
/usr/local/lib/python3.6/dist-packages/tensorflow_core/python/keras/engine/training_utils.py in check_loss_and_target_compatibility(targets, loss_fns, output_shapes)
739 raise ValueError('A target array with shape ' + str(y.shape) +
740 ' was passed for an output of shape ' + str(shape) +
--> 741 ' while using as loss `' + loss_name + '`. '
742 'This loss expects targets to have the same shape '
743 'as the output.')
ValueError: A target array with shape (858, 2) was passed for an output of shape (None, 36, 36, 2) while using as loss `categorical_crossentropy`. This loss expects targets to have the same shape as the output
Размер моего изображения 300