Согласно компилятору, моя функция 'p1' отсутствует в словаре возможностей. Компилятор останавливается прямо перед тем, как на самом деле происходит предварительная обработка. Пожалуйста, дайте мне знать, что я делаю неправильно и в чем причина моей ошибки. Я действительно новичок в Tensorflow. Большое спасибо!
Сообщение об ошибке:
raise ValueError('Feature {} is not in features dictionary.'.format(key))
ValueError: Feature p1 is not in features dictionary.
Произошла ошибка линии:
File "model.py", line 141, in <module>
print(categorical_layer(example_batch).numpy()[0])
import functools
import numpy as np
import pandas as pd
import tensorflow as tf
TRAIN_DATA_URL = "https://skateboy.github.io/train2.csv"
TEST_DATA_URL = "https://skateboy.github.io/eval2.csv"
train_file_path = tf.keras.utils.get_file("train2.csv", TRAIN_DATA_URL)
test_file_path = tf.keras.utils.get_file("eval2.csv", TEST_DATA_URL)
np.set_printoptions(precision=3, suppress=True)
LABEL_COLUMN = 'nominal'
LABELS = [0, 1]
def get_dataset(file_path, **kwargs):
dataset = tf.data.experimental.make_csv_dataset(
file_path,
batch_size=5, # Artificially small to make examples easier to show.
label_name=LABEL_COLUMN,
na_value="?",
num_epochs=1,
ignore_errors=True,
**kwargs)
return dataset
raw_train_data = get_dataset(train_file_path)
raw_test_data = get_dataset(test_file_path)
def show_batch(dataset):
for batch, label in dataset.take(1):
for key, value in batch.items():
print("{:20s}: {}".format(key,value.numpy()))
show_batch(raw_train_data)
CSV_COLUMNS = ['p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'uid', 'time', 'nominal']
temp_dataset = get_dataset(train_file_path, column_names=CSV_COLUMNS)
show_batch(temp_dataset)
SELECT_COLUMNS = ['p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'uid', 'time', 'nominal']
temp_dataset = get_dataset(train_file_path, select_columns=SELECT_COLUMNS)
show_batch(temp_dataset)
SELECT_COLUMNS = ['p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'uid', 'time', 'nominal']
DEFAULTS = [0, 0, 0, 0, 0, 0, 0, 0, 0]
temp_dataset = get_dataset(train_file_path,
select_columns=SELECT_COLUMNS,
column_defaults = DEFAULTS)
show_batch(temp_dataset)
example_batch, labels_batch = next(iter(temp_dataset))
def pack(features, label):
return tf.stack(list(features.values()), axis=-1), label
packed_dataset = temp_dataset.map(pack)
for features, labels in packed_dataset.take(1):
print(features.numpy())
print()
print(labels.numpy())
show_batch(raw_train_data)
example_batch, labels_batch = next(iter(temp_dataset))
class PackNumericFeatures(object):
def __init__(self, names):
self.names = names
def __call__(self, features, labels):
numeric_features = [features.pop(name) for name in self.names]
numeric_features = [tf.cast(feat, tf.float32) for feat in numeric_features]
numeric_features = tf.stack(numeric_features, axis=-1)
features['numeric'] = numeric_features
return features, labels
NUMERIC_FEATURES = ['p1', 'p2', 'p3', 'p4', 'p5', 'p6', 'time']
packed_train_data = raw_train_data.map(
PackNumericFeatures(NUMERIC_FEATURES))
packed_test_data = raw_test_data.map(
PackNumericFeatures(NUMERIC_FEATURES))
show_batch(packed_train_data)
example_batch, labels_batch = next(iter(packed_train_data))
desc = pd.read_csv(train_file_path)[NUMERIC_FEATURES].describe()
desc
MEAN = np.array(desc.T['mean'])
STD = np.array(desc.T['std'])
def normalize_numeric_data(data, mean, std):
# Center the data
return (data-mean)/std
normalizer = functools.partial(normalize_numeric_data, mean=MEAN, std=STD)
numeric_column = tf.feature_column.numeric_column('numeric', normalizer_fn=normalizer, shape=[len(NUMERIC_FEATURES)])
numeric_columns = [numeric_column]
numeric_column
example_batch['numeric']
numeric_layer = tf.keras.layers.DenseFeatures(numeric_columns)
numeric_layer(example_batch).numpy()
list_of_times = list(range(3649,8000))
CATEGORIES = {
'p1' : ['0', '1'],
'p2' : ['2', '3'],
'p3' : ['2', '3'],
'p4' : ['4', '5'],
'p5' : ['4', '5'],
'p6' : ['0', '6'],
'time' : list_of_times
}
categorical_columns = []
for feature, vocab in CATEGORIES.items():
cat_col = tf.feature_column.categorical_column_with_vocabulary_list(
key=feature, vocabulary_list=vocab)
categorical_columns.append(tf.feature_column.indicator_column(cat_col))
print(categorical_columns)
categorical_layer = tf.keras.layers.DenseFeatures(categorical_columns)
print(categorical_layer(example_batch).numpy()[0])
## categorical_columns+ to include both
preprocessing_layer = tf.keras.layers.DenseFeatures(categorical_columns+numeric_columns)
print(preprocessing_layer(example_batch).numpy()[0])
model = tf.keras.Sequential([
preprocessing_layer,
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(1),
])
## from_logits=True VVV
model.compile(
loss=tf.keras.losses.KLDivergence(),
optimizer='adam',
metrics=['accuracy'])
train_data = packed_train_data.shuffle(500)
test_data = packed_test_data
model.fit(train_data, epochs=20)
test_loss, test_accuracy = model.evaluate(test_data)
print('\n\nTest Loss {}, Test Accuracy {}'.format(test_loss, test_accuracy))
predictions = model.predict(test_data)
# Show some results
for prediction, nominal in zip(predictions[:10], list(test_data)[0][1][:10]):
prediction = tf.sigmoid(prediction).numpy()
print("Predicted for nominal performance: {:.2%}".format(prediction[0]),
" | Actual outcome: ",
("NOMINAL" if bool(nominal) else "NOT NOMINAL"))
model.summary()
##model.save('NASAModel')
new_model = tf.keras.models.load_model('NASAModel')
# Check its architecture
new_model.summary()
ОБНОВЛЕНИЕ: Не уверен, что я сделал, но я как-то исправил это.