Я следую примеру графика RO C, приведенному в документации по sklearn здесь (вы можете скачать блокнот Jupyter с здесь ). Он генерирует график RO C для мультиклассовой задачи по набору данных Iris.
В исходном примере прогнозы генерируются с использованием метода decision_function
классификатора SVM, который генерирует этот график:
Когда я изменяю его для генерации прогнозов с использованием predict_proba
, график RO C резко меняется на (в основном в классе 1):
Я не понимаю, почему это происходит. Вероятности предсказания определяются функцией принятия решения, так почему же в классе 1 происходит такое огромное изменение?
РЕДАКТИРОВАТЬ: Изменение: classifier.fit(X_train, y_train).decision_function(X_test)
становится y_score = classifier.fit(X_train, y_train).predict_proba(X_test)
РЕДАКТИРОВАТЬ 2: Полный код, который я бегу -
print(__doc__)
import numpy as np
import matplotlib.pyplot as plt
from itertools import cycle
from sklearn import svm, datasets
from sklearn.metrics import roc_curve, auc
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import label_binarize
from sklearn.multiclass import OneVsRestClassifier
from scipy import interp
from sklearn.metrics import roc_auc_score
# Import some data to play with
iris = datasets.load_iris()
X = iris.data
y = iris.target
# Binarize the output
y = label_binarize(y, classes=[0, 1, 2])
n_classes = y.shape[1]
# Add noisy features to make the problem harder
random_state = np.random.RandomState(0)
n_samples, n_features = X.shape
X = np.c_[X, random_state.randn(n_samples, 200 * n_features)]
# shuffle and split training and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5,
random_state=0)
# Learn to predict each class against the other
classifier = OneVsRestClassifier(svm.SVC(kernel='linear', probability=True,
random_state=random_state))
y_score = classifier.fit(X_train, y_train).predict_proba(X_test) # Here's my change
# Compute ROC curve and ROC area for each class
fpr = dict()
tpr = dict()
roc_auc = dict()
for i in range(n_classes):
fpr[i], tpr[i], _ = roc_curve(y_test[:, i], y_score[:, i])
roc_auc[i] = auc(fpr[i], tpr[i])
# Compute micro-average ROC curve and ROC area
fpr["micro"], tpr["micro"], _ = roc_curve(y_test.ravel(), y_score.ravel())
roc_auc["micro"] = auc(fpr["micro"], tpr["micro"])
plt.figure()
lw = 2
plt.plot(fpr[2], tpr[2], color='darkorange',
lw=lw, label='ROC curve (area = %0.2f)' % roc_auc[2])
plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver operating characteristic example')
plt.legend(loc="lower right")
plt.show()
# First aggregate all false positive rates
all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)]))
# Then interpolate all ROC curves at this points
mean_tpr = np.zeros_like(all_fpr)
for i in range(n_classes):
mean_tpr += interp(all_fpr, fpr[i], tpr[i])
# Finally average it and compute AUC
mean_tpr /= n_classes
fpr["macro"] = all_fpr
tpr["macro"] = mean_tpr
roc_auc["macro"] = auc(fpr["macro"], tpr["macro"])
# Plot all ROC curves
plt.figure()
plt.plot(fpr["micro"], tpr["micro"],
label='micro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["micro"]),
color='deeppink', linestyle=':', linewidth=4)
plt.plot(fpr["macro"], tpr["macro"],
label='macro-average ROC curve (area = {0:0.2f})'
''.format(roc_auc["macro"]),
color='navy', linestyle=':', linewidth=4)
colors = cycle(['aqua', 'darkorange', 'cornflowerblue'])
for i, color in zip(range(n_classes), colors):
plt.plot(fpr[i], tpr[i], color=color, lw=lw,
label='ROC curve of class {0} (area = {1:0.2f})'
''.format(i, roc_auc[i]))
plt.plot([0, 1], [0, 1], 'k--', lw=lw)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Some extension of Receiver operating characteristic to multi-class')
plt.legend(loc="lower right")
plt.show()
y_prob = classifier.predict_proba(X_test)
macro_roc_auc_ovo = roc_auc_score(y_test, y_prob, multi_class="ovo",
average="macro")
weighted_roc_auc_ovo = roc_auc_score(y_test, y_prob, multi_class="ovo",
average="weighted")
macro_roc_auc_ovr = roc_auc_score(y_test, y_prob, multi_class="ovr",
average="macro")
weighted_roc_auc_ovr = roc_auc_score(y_test, y_prob, multi_class="ovr",
average="weighted")
print("One-vs-One ROC AUC scores:\n{:.6f} (macro),\n{:.6f} "
"(weighted by prevalence)"
.format(macro_roc_auc_ovo, weighted_roc_auc_ovo))
print("One-vs-Rest ROC AUC scores:\n{:.6f} (macro),\n{:.6f} "
"(weighted by prevalence)"
.format(macro_roc_auc_ovr, weighted_roc_auc_ovr))