Я пытаюсь скомпилировать модель с 2 выходами, используя пользовательскую функцию потерь, но мне не удается это сделать. Любые идеи? Позвольте мне показать вам, что я сделал,
Вот функция потери:
def contrastive_loss(y_true, y_pred1, y_pred2):
'''Contrastive loss from Hadsell-et-al.'06
http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
'''
euclidean_distance = pairwise_dist(y_pred1, y_pred2)
loss_contrastive = K.mean((1-y_true) * tf.pow(euclidean_distance, 2) +
(y_true) * tf.pow(tf.clip_by_value(2.0 - euclidean_distance, 0.0, 2.0), 2))
return loss_contrastive
Я пробовал это:
optimizer = Adam(lr = 0.00006)
model.compile(loss=[lambda y_true,y_pred: contrastive_loss(y_true, y_pred[0], y_pred[1])],optimizer=optimizer)
Но я получаю эту ошибку:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-27-b31099307b2d> in <module>
15 [lambda y_true,y_pred: Custom_loss(y_true, y_pred, val=0.01)]
16
---> 17 model.compile(loss=[lambda y_true,y_pred: contrastive_loss(y_true, y_pred[0], y_pred[1])],optimizer=optimizer)
18
19 print("Starting training process!")
C:\ProgramData\Anaconda3\lib\site-packages\keras\backend\tensorflow_backend.py in symbolic_fn_wrapper(*args, **kwargs)
73 if _SYMBOLIC_SCOPE.value:
74 with get_graph().as_default():
---> 75 return func(*args, **kwargs)
76 else:
77 return func(*args, **kwargs)
C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training.py in compile(self, optimizer, loss, metrics, loss_weights, sample_weight_mode, weighted_metrics, target_tensors, **kwargs)
117 # Prepare list of loss functions, same size as model outputs.
118 self.loss_functions = training_utils.prepare_loss_functions(
--> 119 self.loss, self.output_names)
120
121 self._feed_outputs = []
C:\ProgramData\Anaconda3\lib\site-packages\keras\engine\training_utils.py in prepare_loss_functions(loss, output_names)
825 raise ValueError('When passing a list as loss, it should have one entry '
826 'per model outputs. The model has {} outputs, but you '
--> 827 'passed loss={}'.format(len(output_names), loss))
828 loss_functions = [get_loss_function(l) for l in loss]
829 else:
ValueError: When passing a list as loss, it should have one entry per model outputs. The model has 2 outputs, but you passed loss=[<function <lambda> at 0x0000000041EFCB88>]
Как решить эту проблему?