Почему мой код генерирует ошибку значения при вычислении корреляции? - PullRequest
0 голосов
/ 15 января 2020

Я пытаюсь создать сценарий для сравнения двух аудиосэмплов и определения, являются ли они похожими или нет (если учитывать такие факторы, как фоновый шум, это будет означать более низкую корреляцию, поэтому «проход» будет произвольно определен по некоторому эмпирическому правилу ). У меня написан фрагмент кода, но я выдаю ошибки, которые я не знаю, как отлаживать.

В частности, код генерирует следующую ошибку в функции корреляции: ValueError: object of too small depth for the desired array.

Я не уверен, что это потому, что я передаю слишком мало аргументов функции, но я действительно не могу найти причину проблемы. Код приведен ниже и должен быть относительно полным.

# compare.py
import argparse

from numpy import correlate


def initialize():
    parser = argparse.ArgumentParser()
    parser.add_argument("-i ", "--source-file", help="source file")
    parser.add_argument("-o ", "--target-file", help="target file")
    args = parser.parse_args()

    SOURCE_FILE = args.source_file if args.source_file else None
    TARGET_FILE = args.target_file if args.target_file else None

    SOURCE_FILE = "Comparison1.wav"
    TARGET_FILE = "Comparison2.wav"

    if not SOURCE_FILE or not TARGET_FILE:
        raise Exception("Source or Target files not specified.")
    return SOURCE_FILE, TARGET_FILE


if __name__ == "__main__":
    SOURCE_FILE, TARGET_FILE = initialize()
    correlate(SOURCE_FILE, TARGET_FILE)

# correlation.py
import commands
import numpy

# seconds to sample audio file for
sample_time = 500

# number of points to scan cross correlation over
span = 150

# step size (in points) of cross correlation
step = 1

# minimum number of points that must overlap in cross correlation
# exception is raised if this cannot be met
min_overlap = 20

# report match when cross correlation has a peak exceeding threshold
threshold = 0.5


# calculate fingerprint
def calculate_fingerprints(filename):
    fpcalc_out = commands.getoutput('fpcalc -raw -length %i %s' % (sample_time, filename))
    fingerprint_index = fpcalc_out.find('FINGERPRINT=') + 12
    # convert fingerprint to list of integers
    fingerprints = map(int, fpcalc_out[fingerprint_index:].split(','))

    return fingerprints


# returns correlation between lists
def correlation(listx, listy):
    if len(listx) == 0 or len(listy) == 0:
        # Error checking in main program should prevent us from ever being
        # able to get here.
        raise Exception('Empty lists cannot be correlated.')
    if len(listx) > len(listy):
        listx = listx[:len(listy)]
    elif len(listx) < len(listy):
        listy = listy[:len(listx)]

    covariance = 0
    for i in range(len(listx)):
        covariance += 32 - bin(listx[i] ^ listy[i]).count("1")
    covariance = covariance / float(len(listx))

    return covariance / 32


# return cross correlation, with listy offset from listx
def cross_correlation(listx, listy, offset):
    if offset > 0:
        listx = listx[offset:]
        listy = listy[:len(listx)]
    elif offset < 0:
        offset = -offset
        listy = listy[offset:]
        listx = listx[:len(listy)]
    if min(len(listx), len(listy)) < min_overlap:
        # Error checking in main program should prevent us from ever being
        # able to get here.
        return
    #raise Exception('Overlap too small: %i' % min(len(listx), len(listy)))
    return correlation(listx, listy)


# cross correlate listx and listy with offsets from -span to span
def compare(listx, listy, span, step):
    if span > min(len(listx), len(listy)):
        # Error checking in main program should prevent us from ever being
        # able to get here.
        raise Exception('span >= sample size: %i >= %i\n' % (span, min(len(listx), len(listy))) +
                        'Reduce span, reduce crop or increase sample_time.')
    corr_xy = []
    for offset in numpy.arange(-span, span + 1, step):
        corr_xy.append(cross_correlation(listx, listy, offset))
    return corr_xy


# return index of maximum value in list
def max_index(listx):
    max_index = 0
    max_value = listx[0]
    for i, value in enumerate(listx):
        if value > max_value:
            max_value = value
            max_index = i
    return max_index


def get_max_corr(corr, source, target):
    max_corr_index = max_index(corr)
    max_corr_offset = -span + max_corr_index * step
    print("max_corr_index = ", max_corr_index, "max_corr_offset = ", max_corr_offset)
    # report matches
    if corr[max_corr_index] > threshold:
        print('%s and %s match with correlation of %.4f at offset %i' %
              (source, target, corr[max_corr_index], max_corr_offset))


def correlate(source, target):
    fingerprint_source = calculate_fingerprints(source)
    fingerprint_target = calculate_fingerprints(target)

    corr = compare(fingerprint_source, fingerprint_target, span, step)
    max_corr_offset = get_max_corr(corr, source, target)

1 Ответ

0 голосов
/ 15 января 2020

В вашем коде есть небольшая ошибка, точнее:

SOURCE_FILE = "Comparison1.wav"
TARGET_FILE = "Comparison2.wav"

Здесь вы присваиваете эти переменные строке (не файлам). И с этого момента они обрабатываются как строки «Comparison1.wav» и «Comparison2.wav» соответственно.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...