Я считаю, что три основные идеи для выполнения того, что вы хотите:
- создать структуру данных аккумулятора (в данном случае DataFrame)
- выполнить итерацию по паре строк, в каждая ваша итерация (currentRow, nextRow)
- сопоставление с образцом текущей строки в следующей строке и сопоставление с образцом в накопленных строках
Не совсем ясно, какое именно совпадение с образцом вы Я искал, поэтому я предположил, что если какая-либо буква кода currentRow находится на следующей, то объединить их.
, используя в качестве примера data.csv (с разделителями пробелов):
row_numbers ID code amount
1 med a 1
2 med a,b 1
3 med b,c 1
4 med c 1
5 med d 10
6 cad a,b 1
7 cad a,b,d 0
8 cad e 2
import pandas as pd
from itertools import zip_longest
def generate_pairs(group):
''' generate pairs (currentRow, nextRow) '''
group_curriterrows = group.iterrows()
group_nextiterrows = group.iterrows()
group_nextiterrows.__next__()
zip_list = zip_longest(group_curriterrows, group_nextiterrows)
return zip_list
def generate_lists_to_check(currRow, nextRow, accumulated_rows):
''' generate list if any next letters are in current ones and
another list if any next letters are in the accumulated codes '''
currLetters = str(currRow["code"]).split(",")
nextLetters = str(nextRow["code"]).split(",")
letter_inNext = [letter in nextLetters for letter in currLetters]
unique_acc_codes = [str(v) for v in accumulated_rows["code"].unique()]
letter_inHistory = [any(letter in unq for letter in nextLetters)
for unq in unique_acc_codes]
return letter_inNext, letter_inHistory
def create_newRow(accumulated_rows, nextRow):
nextRow["row_numbers"] = str(nextRow["row_numbers"])
accumulated_rows = accumulated_rows.append(nextRow,ignore_index=True)
return accumulated_rows
def update_existingRow(accumulated_rows, match_idx, Row):
accumulated_rows.loc[match_idx]["code"] += ","+Row["code"]
accumulated_rows.loc[match_idx]["amount"] += Row["amount"]
accumulated_rows.loc[match_idx]["volume"] += Row["volume"]
accumulated_rows.loc[match_idx]["row_numbers"] += ','+str(Row["row_numbers"])
return accumulated_rows
if __name__ == "__main__":
df = pd.read_csv("extended.tsv",sep=" ")
groups = pd.DataFrame(columns=df.columns)
for ID, group in df.groupby(["ID"], sort=False):
accumulated_rows = pd.DataFrame(columns=df.columns)
group_firstRow = group.iloc[0]
accumulated_rows.loc[len(accumulated_rows)] = group_firstRow.values
row_numbers = str(group_firstRow.values[0])
accumulated_rows.set_value(0,'row_numbers',row_numbers)
zip_list = generate_pairs(group)
for (currRow_idx, currRow), Next in zip_list:
if not (Next is None):
(nextRow_idx, nextRow) = Next
letter_inNext, letter_inHistory = \
generate_lists_to_check(currRow, nextRow, accumulated_rows)
if any(letter_inNext) :
accumulated_rows = update_existingRow(accumulated_rows, (len(accumulated_rows)-1), nextRow)
elif any(letter_inHistory):
matches = [ idx for (idx, bool_val) in enumerate(letter_inHistory) if bool_val == True ]
first_match_idx = matches[0]
accumulated_rows = update_existingRow(accumulated_rows, first_match_idx, nextRow)
for match_idx in matches[1:]:
accumulated_rows = update_existingRow(accumulated_rows, first_match_idx, accumulated_rows.loc[match_idx])
accumulated_rows = accumulated_rows.drop(match_idx)
elif not any(letter_inNext):
accumulated_rows = create_newRow(accumulated_rows, nextRow)
groups = groups.append(accumulated_rows)
groups.reset_index(inplace=True,drop=True)
print(groups)
ВЫХОДНЫЕ обычные строки упорядочивают УДАЛЯЮЩИЕ строки, используя объем столбца из текущего кода, потому что первый экзамен не имеет объема столбца:
row_numbers ID code amount
0 1 med a,a,b,b,c,c 4
1 5 med d 10
2 6 cad a,b,a,b,d 1
3 8 cad e 2
Новый пример ВЫХОДА:
row_numbers ID code amount volume
0 1,5,9,3 med CO-96,CO-B15,CO-B15,CO-96,OA-18,OA-18 4 4
1 2,7 med CO-16,CO-B20,CO-16 3 3
2 4,6 med CO-252,CO-252,CO-45 3 3
3 8 med OA-258 1 1
4 10,13 cad PR-96,PR-96,CO-243 4 4
5 11,12 cad PR-87,OA-258,PR-87 3 3