-215: Утверждение не удалось npoints> = 0 && (глубина == CV_32F || глубина == CV_32S) в функции 'contourArea' - PullRequest
0 голосов
/ 04 марта 2020

Я пробую этот код из https://github.com/longphungtuan94/ALPR_System, и исправил большинство проблем, связанных с несовпадением версий opencv. Но не удалось исправить эту ошибку: -

 line 61, in segment_characters_from_plate
    c = max(cnts, key=cv2.contourArea)
cv2.error: OpenCV(4.2.0) /io/opencv/modules/imgproc/src/shapedescr.cpp:315: error: (-215:Assertion failed) npoints >= 0 && (depth == CV_32F || depth == CV_32S) in function 'contourArea'

ЧТО ИСПЫТАЛ ТАК ВНЕ (Но ни один из них не сработал) : -

OpenCV ( 4.0.0) утверждение не выполнено в функции 'contourArea'

OpenCV Контуры в Python: как решить 'индекс списка вне диапазона'

(- 215: утверждение не выполнено) npoints> = 0 && (глубина == CV_32F || глубина == CV_32S) в функции 'contourArea'

Код выглядит следующим образом : -

import cv2
import numpy as np

import imutils
from skimage.filters import threshold_local
from skimage import measure


def sort_contours_left_to_right(character_contours):
    """
    Sort contours from left to right
    """
    i = 0
    boundingBoxes = [cv2.boundingRect(c) for c in character_contours]
    (character_contours, boundingBoxes) = zip(*sorted(zip(character_contours, boundingBoxes),
                                                key=lambda b:b[1][i], reverse=False))
    return character_contours


def segment_characters_from_plate(plate_img, fixed_width):
    """
    extract the Value component from the HSV color space and apply adaptive thresholding
    to reveal the characters on the license plate
    """
    V = cv2.split(cv2.cvtColor(plate_img, cv2.COLOR_BGR2HSV))[2]
    T = threshold_local(V, 29, offset=15, method='gaussian')
    thresh = (V > T).astype('uint8') * 255
    thresh = cv2.bitwise_not(thresh)

    # resize the license plate region to a canoncial size
    plate_img = imutils.resize(plate_img, width=fixed_width)
    thresh = imutils.resize(thresh, width=fixed_width)
    bgr_thresh = cv2.cvtColor(thresh, cv2.COLOR_GRAY2BGR)
    bgr_thresh = np.uint8(bgr_thresh)
    # perform a connected components analysis and initialize the mask to store the locations
    # of the character candidates
    labels = measure.label(thresh, neighbors=8, background=0)
    charCandidates = np.zeros(thresh.shape, dtype='uint8')

    # loof over the unique components
    characters = []
    for label in np.unique(labels):
        # if this is the background label, ignore it
        if label == 0:
            continue
        # otherwise, construct the label mask to display only connected components for the
        # current label, then find contours in the label mask
        labelMask = np.zeros(thresh.shape, dtype='uint8')
        labelMask[labels == label] = 255
        cnts = cv2.findContours(labelMask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        cnts = cnts[0] if imutils.is_cv2() else cnts[1]

        # ensure at least one contour was found in the mask
        if len(cnts) > 0:

            # grab the largest contour which corresponds to the component in the mask, then
            # grab the bounding box for the contour
            c = max(cnts, key=cv2.contourArea)
            (boxX, boxY, boxW, boxH) = cv2.boundingRect(c)

            # compute the aspect ratio, solodity, and height ration for the component
            aspectRatio = boxW / float(boxH)
            solidity = cv2.contourArea(c) / float(boxW * boxH)
            heightRatio = boxH / float(plate_img.shape[0])

            # determine if the aspect ratio, solidity, and height of the contour pass
            # the rules tests
            keepAspectRatio = aspectRatio < 1.0
            keepSolidity = solidity > 0.15
            keepHeight = heightRatio > 0.5 and heightRatio < 0.95

            # check to see if the component passes all the tests
            if keepAspectRatio and keepSolidity and keepHeight and boxW > 14:
                # compute the convex hull of the contour and draw it on the character
                # candidates mask
                hull = cv2.convexHull(c)
                cv2.drawContours(charCandidates, [hull], -1, 255, -1)

    _, contours, hier = cv2.findContours(charCandidates, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    if contours:
        contours = sort_contours_left_to_right(contours)
        characters = []

        addPixel = 4 # value to be added to each dimension of the character
        for c in contours:
            (x,y,w,h) = cv2.boundingRect(c)
            if y > addPixel:
                y = y - addPixel
            else:
                y = 0
            if x > addPixel:
                x = x - addPixel
            else:
                x = 0
            temp = bgr_thresh[y:y+h+(addPixel*2), x:x+w+(addPixel*2)]
            characters.append(temp)
        return characters
    else:
        return None

1 Ответ

0 голосов
/ 04 марта 2020

Сигнатура метода cv2.findContours меняется с каждой основной версией. Это

contours, hierarchy = cv2.findContours(...)

для OpenCV 2.xx , а также OpenCV 4.xx , но

image, contours, hierarchy = cv2.findContours(...)

для OpenCV 3.xx .

Теперь (первой) проблемой является следующий код:

cnts = cnts[0] if imutils.is_cv2() else cnts[1]

Вы только проверяете, используется ли версия OpenCV 2.xx, такой, что cnts[1] также используется для OpenCV 4.xx, где он также должен быть cnts[0]. Лучше заменить эту imutils проверку версии на что-то вроде:

cnts = cnts[0] if len(cnts) == 2 else cnts[1]

До дальнейшего изменения сигнатуры метода это будет работать для всех основных версий OpenCV.

Обратите внимание, что Здесь произойдет еще одна ошибка:

_, contours, hier = cv2.findContours(...)

Это спецификация c для OpenCV 3.xx, так что лучше соответственно измените эту строку.

Надеюсь, это поможет!

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...