Это пример кода, который может достичь этого. Вы можете сделать список столбцов динамическим c и добавить дополнительные функции, если это необходимо.
import org.apache.spark.sql.types._
import org.apache.spark.sql.Column
val df = Seq(
("0.9192019", "0.1992019", "0.9955999"),
("0.9292018", "0.2992019", "0.99662018"),
("0.9392017", "0.3992019", "0.99772000")).
toDF("item1_value","item2_value","item3_value").
withColumn("item1_value", $"item1_value".cast(DoubleType)).
withColumn("item2_value", $"item2_value".cast(DoubleType)).
withColumn("item3_value", $"item3_value".cast(DoubleType))
val aggregateColumns = Seq("item1_value","item2_value","item3_value")
var aggDFs = aggregateColumns.map( c => {
df.groupBy().agg(lit(c).as("col_name"),sum(c).as("sum_of_column"), avg(c).as("avg_of_column"), variance(c).as("var_of_column"))
})
var combinedDF = aggDFs.reduce(_ union _)
Возвращает следующий вывод:
scala> df.show(10,false)
+-----------+-----------+-----------+
|item1_value|item2_value|item3_value|
+-----------+-----------+-----------+
|0.9192019 |0.1992019 |0.9955999 |
|0.9292018 |0.2992019 |0.99662018 |
|0.9392017 |0.3992019 |0.99772 |
+-----------+-----------+-----------+
scala> combinedDF.show(10,false)
+-----------+------------------+------------------+---------------------+
|col_name |sum_of_column |avg_of_column |var_of_column |
+-----------+------------------+------------------+---------------------+
|item1_value|2.7876054 |0.9292018 |9.999800000999957E-5 |
|item2_value|0.8976057000000001|0.2992019 |0.010000000000000002 |
|item3_value|2.9899400800000002|0.9966466933333334|1.1242332201333484E-6|
+-----------+------------------+------------------+---------------------+