Я пытаюсь показать, как средние оценки на продвинутом Swedi sh (SVENSKA2) менялись для студентов нашего университета с течением времени и в зависимости от программы. Я использую следующий код:
totdata%>%
group_by(program,ADMISSIONROUND_ID)%>%
mutate(mean=mean(SVENSKA2),na.rm=T)%>%
ungroup%>%
ggplot(aes(x=ADMISSIONROUND_ID,y=mean, group=program, color=program))+geom_line()+scale_y_continuous(limits=c(0,20))
Как ни странно, данные удаляют 2458 из 2468 строк, сохраняя только единицы из программы "Ekonomi COOP".
В SVENSKA2 пропущены только 13,5% значений, поэтому я не должен думать, что это так.
Что происходит на земле, почему это происходит и как мне это исправить?
Небольшой отрывок данных (содержащий ADMISSIONROUND_ID, progam и SVENSKA2):
structure(list(start_date = structure(c(15585, 15585, 15585,
15585, 15585, 15585, 15585, 15585, 15585, 15585, 15585, 15585,
15585, 15585, 15585, 15585, 15585, 15585, 15585, 15585), class = "Date"),
ADMISSIONROUND_ID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = c("HT2012",
"HT2013", "HT2014", "HT2015", "HT2016", "HT2017", "HT2018",
"HT2019"), class = c("ordered", "factor")), program = c("Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom"), SVENSKA2 = c(20, 15, 15, NA, NA, 10, 15, 10, 10,
20, 15, 15, NA, 20, 15, 20, 15, 15, 10, 15)), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -20L), groups = structure(list(
start_date = structure(15585, class = "Date"), .rows = list(
1:20)), row.names = c(NA, -1L), class = c("tbl_df", "tbl",
"data.frame"), .drop = TRUE))
большой отрывок данных (содержащий ADMISSIONROUND_ID, progam и SVENSKA2):
structure(list(start_date = structure(c(15585, 15585, 15585,
15585, 15585, 15585, 15585, 15585, 15585, 15585, 15585, 15585,
15585, 15585, 15585, 15585, 15585, 15585, 15585, 15949, 15949,
15949, 15949, 15949, 15949, 15949, 15949, 15949, 15949, 15949,
15949, 15949, 15949, 15949, 16313, 16313, 16313, 16313, 16313,
16313, 16313, 16313, 16313, 16313, 16677, 16677, 16677, 16677,
16677, 16677, 16677, 16677, 16677, 16677, 17041, 17041, 17041,
17041, 17041, 17041, 17041, 17041, 17041, 17041, 17041, 17041,
17041, 17041, 17041, 17041, 17041, 17041, 17041, 17405, 17405,
17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405,
17405, 17405, 17776, 17776, 17776, 17776, 17776, 17776, 17776,
17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776,
17776, 17776, 17776, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
15585, 15585, 15585, 15585, 15585, 15585, 15585, 15949, 15949,
15949, 15949, 15949, 15949, 15949, 15949, 15949, 15949, 15949,
15949, 15949, 15949, 15949, 15949, 16313, 16313, 16313, 16313,
16313, 16313, 16313, 16677, 16677, 16677, 16677, 16677, 16677,
16677, 16677, 17041, 17041, 17041, 17041, 17041, 17041, 17041,
17041, 17041, 17041, 17041, 17041, 17041, 17041, 17405, 17405,
17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405,
17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405,
17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776,
17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776,
17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776,
17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
16677, 16677, 17041, 17041, 17041, 17041, 17041, 17041, 17041,
17041, 17041, 17041, 17041, 17041, 17405, 17405, 17405, 17405,
17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405,
17405, 17405, 17776, 17776, 17776, 17776, 17776, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,
NA, NA, NA, NA, NA, NA, NA, NA, 16313, 16313, 16677, 16677, 16677,
17041, 17041, 17041, 17041, 17041, 17041, 17041, 17041, 17041,
17041, 17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405,
17405, 17405, 17405, 17405, 17405, 17405, 17405, 17405, 17776,
17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776,
17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776, 17776,
17776, 17776, 17776, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140,
18140, 18140, 18140, 18140, 18140, 18140, 18140, 18140), class = "Date"),
ADMISSIONROUND_ID = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L,
3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L,
4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L,
3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 4L, 4L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 1L,
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L,
4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 3L, 3L, 4L,
4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L,
6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L, 7L,
7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L,
8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L, 8L), .Label = c("HT2012",
"HT2013", "HT2014", "HT2015", "HT2016", "HT2017", "HT2018",
"HT2019"), class = c("ordered", "factor")), SVENSKA2 = c(10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,
10, 10, 10, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5,
12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5, 12.5), program = c("Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Ekonom",
"Ekonom", "Maklarekonom", "Ekonom", "Ekonom", "Ekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Maklarekonom", "Maklarekonom", "Ekonom", "Ekonom", "Maklarekonom",
"Ekonom", "Ekonom", "Maklarekonom", "Maklarekonom", "Maklarekonom",
"Ekonom", "Maklarekonom", "Ekonom", "Digitala_Medier", "Digitala_Medier",
"Ekonom", "Maklarekonom", "Maklarekonom", "Ekonomi COOP",
"Ekonomi COOP", "Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Maklarekonom", "Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Maklarekonom", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Ekonom", "Digitala_Medier",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Digitala_Medier",
"Maklarekonom", "Digitala_Medier", "Digitala_Medier", "Maklarekonom",
"Digitala_Medier", "Digitala_Medier", "Maklarekonom", "Ekonom",
"Maklarekonom", "Ekonom", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Digitala_Medier", "Digitala_Medier", "Digitala_Medier",
"Maklarekonom", "Maklarekonom", "Maklarekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom", "Ekonom",
"Ekonom", "Ekonom", "Ekonom", "Ekonom")), class = c("grouped_df",
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -500L), groups = structure(list(
start_date = structure(c(15585, 15949, 16313, 16677, 17041,
17405, 17776, 18140, NA), class = "Date"), .rows = list(c(1L,
2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L, 11L, 12L, 13L, 14L,
15L, 16L, 17L, 18L, 19L, 130L, 131L, 132L, 133L, 134L, 135L,
136L), c(20L, 21L, 22L, 23L, 24L, 25L, 26L, 27L, 28L, 29L,
30L, 31L, 32L, 33L, 34L, 137L, 138L, 139L, 140L, 141L, 142L,
143L, 144L, 145L, 146L, 147L, 148L, 149L, 150L, 151L, 152L
), c(35L, 36L, 37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 153L,
154L, 155L, 156L, 157L, 158L, 159L, 425L, 426L), c(45L, 46L,
47L, 48L, 49L, 50L, 51L, 52L, 53L, 54L, 160L, 161L, 162L,
163L, 164L, 165L, 166L, 167L, 274L, 275L, 427L, 428L, 429L
), c(55L, 56L, 57L, 58L, 59L, 60L, 61L, 62L, 63L, 64L, 65L,
66L, 67L, 68L, 69L, 70L, 71L, 72L, 73L, 168L, 169L, 170L,
171L, 172L, 173L, 174L, 175L, 176L, 177L, 178L, 179L, 180L,
181L, 276L, 277L, 278L, 279L, 280L, 281L, 282L, 283L, 284L,
285L, 286L, 287L, 430L, 431L, 432L, 433L, 434L, 435L, 436L,
437L, 438L, 439L), c(74L, 75L, 76L, 77L, 78L, 79L, 80L, 81L,
82L, 83L, 84L, 85L, 86L, 182L, 183L, 184L, 185L, 186L, 187L,
188L, 189L, 190L, 191L, 192L, 193L, 194L, 195L, 196L, 197L,
198L, 199L, 200L, 201L, 288L, 289L, 290L, 291L, 292L, 293L,
294L, 295L, 296L, 297L, 298L, 299L, 300L, 301L, 302L, 440L,
441L, 442L, 443L, 444L, 445L, 446L, 447L, 448L, 449L, 450L,
451L, 452L, 453L, 454L, 455L), c(87L, 88L, 89L, 90L, 91L,
92L, 93L, 94L, 95L, 96L, 97L, 98L, 99L, 100L, 101L, 102L,
103L, 104L, 105L, 202L, 203L, 204L, 205L, 206L, 207L, 208L,
209L, 210L, 211L, 212L, 213L, 214L, 215L, 216L, 217L, 218L,
219L, 220L, 221L, 222L, 223L, 224L, 225L, 226L, 227L, 228L,
229L, 230L, 231L, 232L, 233L, 234L, 235L, 236L, 237L, 303L,
304L, 305L, 306L, 307L, 456L, 457L, 458L, 459L, 460L, 461L,
462L, 463L, 464L, 465L, 466L, 467L, 468L, 469L, 470L, 471L,
472L, 473L, 474L, 475L, 476L, 477L), c(106L, 107L, 108L,
109L, 110L, 111L, 112L, 113L, 114L, 115L, 116L, 117L, 118L,
119L, 120L, 121L, 122L, 123L, 124L, 125L, 126L, 127L, 128L,
129L, 238L, 239L, 240L, 241L, 242L, 243L, 244L, 245L, 246L,
247L, 248L, 249L, 250L, 251L, 252L, 253L, 254L, 255L, 256L,
257L, 258L, 259L, 260L, 261L, 262L, 263L, 264L, 265L, 266L,
267L, 268L, 269L, 270L, 271L, 272L, 273L, 308L, 309L, 310L,
311L, 312L, 313L, 314L, 315L, 316L, 317L, 318L, 319L, 320L,
321L, 322L, 323L, 324L, 325L, 326L, 327L, 328L, 329L, 330L,
331L, 332L, 333L, 334L, 335L, 336L, 478L, 479L, 480L, 481L,
482L, 483L, 484L, 485L, 486L, 487L, 488L, 489L, 490L, 491L,
492L, 493L, 494L, 495L, 496L, 497L, 498L, 499L, 500L), 337:424)), row.names = c(NA,
-9L), class = c("tbl_df", "tbl", "data.frame"), .drop = TRUE))