Я только что сделал обычное python разделение и назначил dtype для np.float32
>>> y=np.array(x.split(), dtype=np.float32())
>>> y
array([ 5.78032617e+03, 7.26118506e+03, 7.74918994e+03,
8.48876953e+03, 5.40613379e+03, 2.82840991e+03,
9.62095703e+02, 1.00000000e+00, 3.09737207e+03,
3.88515991e+03, 5.43267822e+03, 8.06062793e+03,
2.76845703e+03, 6.57425781e+03, 7.26859070e+02,
2.00000000e+00, 2.06142896e+03, 4.66528223e+03,
8.21411914e+03, 3.57937988e+03, 8.54205664e+03,
2.08906201e+03, 8.82926270e+02, 3.00000000e+00], dtype=float32)
PS Я скопировал кусок ваших данных выборки и назначил его переменной «x»
Хорошо, это не зависит от пробелов и не использует split (), кроме строк, и поддерживает форму массива, но все еще использует не Numpy python.
>>> n=15
>>> x=' 5.780326E+03 7.261185E+03 7.749190E+03 8.488770E+03 5.406134E+03 2.828410E+03 9.620957E+02 1.0000000E+00\n 3.097372E+03 3.885160E+03 5.432678E+03 8.060628E+03 2.768457E+03 6.574258E+03 7.268591E+02 2.0000000E+00\n 2.061429E+03 4.665282E+03 8.214119E+03 3.579380E+03 8.542057E+03 2.089062E+03 8.829263E+02 3.0000000E+00\n 3.572444E+03 9.920473E+03 3.573251E+03 6.423813E+03 2.469338E+03 4.652253E+03 8.211962E+02 4.0000000E+00\n 7.460966E+03 7.691966E+03 7.501826E+03 3.414511E+03 8.590221E+03 6.737868E+03 8.586273E+02 5.0000000E+00\n 3.250046E+03 9.611985E+03 9.195165E+03 1.064800E+03 7.944535E+03 2.685740E+03 8.212849E+02 6.0000000E+00\n 8.069926E+03 9.208576E+03 4.267749E+03 2.491888E+03 9.036555E+03 5.001732E+03 7.202407E+02 7.0000000E+00\n 5.691460E+03 3.868344E+03 3.103342E+03 6.567618E+03 7.274860E+03 8.393253E+03 5.628069E+02 8.0000000E+00\n 2.887292E+03 9.081563E+02 6.955551E+03 6.763133E+03 2.146178E+03 2.033861E+03 9.725472E+02 9.0000000E+00\n 6.127778E+03 8.065057E+02 7.474341E+03 4.185868E+03 4.516230E+03 8.714840E+03 8.254562E+02 1.0000000E+01\n 1.594643E+03 6.060956E+03 2.137153E+03 3.505950E+03 7.714227E+03 6.249693E+03 5.724376E+02 1.1000000E+01\n 5.039059E+03 3.138161E+03 5.570104E+03 4.594189E+03 7.889644E+03 1.891062E+03 7.085753E+02 1.2000000E+01\n 3.263593E+03 6.085087E+03 7.136061E+03 9.895028E+03 6.139666E+03 6.670919E+03 5.018248E+02 1.3000000E+01\n 9.954830E+03 6.777074E+03 3.013747E+03 3.638458E+03 4.357685E+03 1.876539E+03 5.969378E+02 1.4000000E+01\n 9.920853E+03 3.414156E+03 5.534430E+03 2.011815E+03 7.791122E+03 3.893439E+03 5.229754E+02 1.5000000E+01\n 5.447470E+03 7.184321E+03 1.382575E+03 9.134295E+03 7.883753E+02 9.160537E+03 7.521197E+02 1.6000000E+01\n 3.344917E+03 8.151884E+03 3.596052E+03 3.953284E+03 7.456115E+03 7.749632E+03 9.773521E+02 1.7000000E+01\n 6.310496E+03 1.472792E+03 1.812452E+03 9.535100E+03 1.581263E+03 3.649150E+03 6.562440E+02 1.8000000E+01'
>>> s=np.array([[y[i:i+n] for i in range(0, len(y) - n + 1, n)] for y in x.splitlines()], dtype=np.float32)
>>> s
array([[ 5.78032617e+03, 7.26118506e+03, 7.74918994e+03,
8.48876953e+03, 5.40613379e+03, 2.82840991e+03,
9.62095703e+02, 1.00000000e+00],
[ 3.09737207e+03, 3.88515991e+03, 5.43267822e+03,
8.06062793e+03, 2.76845703e+03, 6.57425781e+03,
7.26859070e+02, 2.00000000e+00],
[ 2.06142896e+03, 4.66528223e+03, 8.21411914e+03,
3.57937988e+03, 8.54205664e+03, 2.08906201e+03,
8.82926270e+02, 3.00000000e+00],
[ 3.57244409e+03, 9.92047266e+03, 3.57325098e+03,
6.42381299e+03, 2.46933789e+03, 4.65225293e+03,
8.21196228e+02, 4.00000000e+00],
[ 7.46096582e+03, 7.69196582e+03, 7.50182617e+03,
3.41451099e+03, 8.59022070e+03, 6.73786816e+03,
8.58627319e+02, 5.00000000e+00],
[ 3.25004590e+03, 9.61198535e+03, 9.19516504e+03,
1.06480005e+03, 7.94453516e+03, 2.68573999e+03,
8.21284912e+02, 6.00000000e+00],
[ 8.06992578e+03, 9.20857617e+03, 4.26774902e+03,
2.49188794e+03, 9.03655469e+03, 5.00173193e+03,
7.20240723e+02, 7.00000000e+00],
[ 5.69145996e+03, 3.86834399e+03, 3.10334204e+03,
6.56761816e+03, 7.27485986e+03, 8.39325293e+03,
5.62806885e+02, 8.00000000e+00],
[ 2.88729199e+03, 9.08156311e+02, 6.95555078e+03,
6.76313281e+03, 2.14617798e+03, 2.03386096e+03,
9.72547180e+02, 9.00000000e+00],
[ 6.12777783e+03, 8.06505676e+02, 7.47434082e+03,
4.18586816e+03, 4.51622998e+03, 8.71483984e+03,
8.25456177e+02, 1.00000000e+01],
[ 1.59464294e+03, 6.06095605e+03, 2.13715308e+03,
3.50594995e+03, 7.71422705e+03, 6.24969287e+03,
5.72437622e+02, 1.10000000e+01],
[ 5.03905908e+03, 3.13816089e+03, 5.57010400e+03,
4.59418896e+03, 7.88964404e+03, 1.89106201e+03,
7.08575317e+02, 1.20000000e+01],
[ 3.26359302e+03, 6.08508691e+03, 7.13606104e+03,
9.89502832e+03, 6.13966602e+03, 6.67091895e+03,
5.01824799e+02, 1.30000000e+01],
[ 9.95483008e+03, 6.77707422e+03, 3.01374707e+03,
3.63845801e+03, 4.35768506e+03, 1.87653894e+03,
5.96937805e+02, 1.40000000e+01],
[ 9.92085254e+03, 3.41415601e+03, 5.53443018e+03,
2.01181494e+03, 7.79112207e+03, 3.89343896e+03,
5.22975403e+02, 1.50000000e+01],
[ 5.44747021e+03, 7.18432080e+03, 1.38257495e+03,
9.13429492e+03, 7.88375305e+02, 9.16053711e+03,
7.52119690e+02, 1.60000000e+01],
[ 3.34491699e+03, 8.15188379e+03, 3.59605200e+03,
3.95328394e+03, 7.45611523e+03, 7.74963184e+03,
9.77352112e+02, 1.70000000e+01],
[ 6.31049609e+03, 1.47279199e+03, 1.81245203e+03,
9.53509961e+03, 1.58126294e+03, 3.64914990e+03,
6.56244019e+02, 1.80000000e+01]], dtype=float32)