ниже - результат моей тонкой настройки.
Training Loss Valid. Loss Valid. Accur. Training Time Validation Time
epoch
1 0.16 0.11 0.96 0:02:11 0:00:05
2 0.07 0.13 0.96 0:02:19 0:00:05
3 0.03 0.14 0.97 0:02:22 0:00:05
4 0.02 0.16 0.96 0:02:21 0:00:05
Далее я попытался использовать модель для прогнозирования меток из файла CSV. я создал столбец метки, установил тип int64 и запустил прогноз. Однако
print('Predicting labels for {:,} test sentences...'.format(len(input_ids)))
model.eval()
# Tracking variables
predictions , true_labels = [], []
# Predict
for batch in prediction_dataloader:
# Add batch to GPU
batch = tuple(t.to(device) for t in batch)
# Unpack the inputs from our dataloader
b_input_ids, b_input_mask, b_labels = batch
# Telling the model not to compute or store gradients, saving memory and
# speeding up prediction
with torch.no_grad():
# Forward pass, calculate logit predictions
outputs = model(b_input_ids, token_type_ids=None,
attention_mask=b_input_mask)
logits = outputs[0]
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
# Store predictions and true labels
predictions.append(logits)
true_labels.append(label_ids)
, хотя я могу распечатать прогнозы [4.235, -4.805] et c и true_labels [NaN, NaN .....], я не могу получить предсказанные метки {0 или 1}. Я что-то здесь упускаю?