У меня есть один набор данных, который содержит еженедельные данные о продажах с 4-этажного магазина (Store_1, Store_2, Store_3 и Store_4) в период с 2017 по 2019 гг.
FINAL_SALES<-structure(list(year_week = structure(154:322, .Label = c("2014 01",
"2014 06", "2014 07", "2014 08", "2014 09", "2014 10", "2014 11",
"2014 12", "2014 13", "2014 14", "2014 15", "2014 16", "2014 17",
"2014 18", "2014 19", "2014 20", "2014 21", "2014 22", "2014 23",
"2014 24", "2014 25", "2014 26", "2014 27", "2014 28", "2014 29",
"2014 30", "2014 31", "2014 32", "2014 33", "2014 34", "2014 35",
"2014 36", "2014 37", "2014 38", "2014 39", "2014 40", "2014 41",
"2014 42", "2014 43", "2014 44", "2014 45", "2014 46", "2014 47",
"2014 48", "2014 49", "2014 50", "2014 51", "2014 52", "2015 01",
"2015 02", "2015 03", "2015 04", "2015 05", "2015 06", "2015 07",
"2015 08", "2015 09", "2015 10", "2015 11", "2015 12", "2015 13",
"2015 14", "2015 15", "2015 16", "2015 17", "2015 18", "2015 19",
"2015 20", "2015 21", "2015 22", "2015 23", "2015 24", "2015 25",
"2015 26", "2015 27", "2015 28", "2015 29", "2015 30", "2015 31",
"2015 32", "2015 33", "2015 34", "2015 35", "2015 36", "2015 37",
"2015 38", "2015 39", "2015 40", "2015 41", "2015 42", "2015 43",
"2015 44", "2015 45", "2015 46", "2015 47", "2015 48", "2015 49",
"2015 50", "2015 51", "2015 52", "2015 53", "2016 01", "2016 02",
"2016 03", "2016 04", "2016 05", "2016 06", "2016 07", "2016 08",
"2016 09", "2016 10", "2016 11", "2016 12", "2016 13", "2016 14",
"2016 15", "2016 16", "2016 17", "2016 18", "2016 19", "2016 20",
"2016 21", "2016 22", "2016 23", "2016 24", "2016 25", "2016 26",
"2016 27", "2016 28", "2016 29", "2016 30", "2016 31", "2016 32",
"2016 33", "2016 34", "2016 35", "2016 36", "2016 37", "2016 38",
"2016 39", "2016 40", "2016 41", "2016 42", "2016 43", "2016 44",
"2016 45", "2016 46", "2016 47", "2016 48", "2016 49", "2016 50",
"2016 51", "2016 52", "2017 01", "2017 02", "2017 03", "2017 04",
"2017 05", "2017 06", "2017 07", "2017 08", "2017 09", "2017 10",
"2017 11", "2017 12", "2017 13", "2017 14", "2017 15", "2017 16",
"2017 17", "2017 18", "2017 19", "2017 20", "2017 21", "2017 22",
"2017 23", "2017 24", "2017 25", "2017 26", "2017 27", "2017 28",
"2017 29", "2017 30", "2017 31", "2017 32", "2017 33", "2017 34",
"2017 35", "2017 36", "2017 37", "2017 38", "2017 39", "2017 40",
"2017 41", "2017 42", "2017 43", "2017 44", "2017 45", "2017 46",
"2017 47", "2017 48", "2017 49", "2017 50", "2017 51", "2017 52",
"2018 01", "2018 02", "2018 03", "2018 04", "2018 05", "2018 06",
"2018 07", "2018 08", "2018 09", "2018 10", "2018 11", "2018 12",
"2018 13", "2018 14", "2018 15", "2018 16", "2018 17", "2018 18",
"2018 19", "2018 20", "2018 21", "2018 22", "2018 23", "2018 24",
"2018 25", "2018 26", "2018 27", "2018 28", "2018 29", "2018 30",
"2018 31", "2018 32", "2018 33", "2018 34", "2018 35", "2018 36",
"2018 37", "2018 38", "2018 39", "2018 40", "2018 41", "2018 42",
"2018 43", "2018 44", "2018 45", "2018 46", "2018 47", "2018 48",
"2018 49", "2018 50", "2018 51", "2018 52", "2019 01", "2019 02",
"2019 03", "2019 04", "2019 05", "2019 06", "2019 07", "2019 08",
"2019 09", "2019 10", "2019 11", "2019 12", "2019 13", "2019 14",
"2019 15", "2019 16", "2019 17", "2019 18", "2019 19", "2019 20",
"2019 21", "2019 22", "2019 23", "2019 24", "2019 25", "2019 26",
"2019 27", "2019 28", "2019 29", "2019 30", "2019 31", "2019 32",
"2019 33", "2019 34", "2019 35", "2019 36", "2019 37", "2019 38",
"2019 39", "2019 40", "2019 41", "2019 42", "2019 43", "2019 44",
"2019 45", "2019 46", "2019 47", "2019 48", "2019 49", "2019 50",
"2019 51", "2019 52", "2020 01", "2020 02", "2020 03", "2020 04",
"2020 05", "2020 06", "2020 07", "2020 08", "2020 09", "2020 10",
"2020 11", "2020 12", "2020 13"), class = "factor"), Year = c(2017,
2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017,
2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017,
2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017,
2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017, 2017,
2017, 2017, 2017, 2017, 2017, 2017, 2017, 2018, 2018, 2018, 2018,
2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018,
2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018,
2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018,
2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2018,
2018, 2018, 2018, 2018, 2019, 2019, 2019, 2019, 2019, 2019, 2019,
2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019,
2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019,
2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019,
2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019, 2019,
2019, 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020, 2020,
2020, 2020, 2020), Store_1 = c(1371.61, 2398.37, 2107.29, 1752.56,
2394.57, 2309.07, 3266.67, 1993.1, 3021.57, 2922.96, 3357.87,
2317.24, 2563.67, 3883.79, 2688.5, 2583.24, 2486.72, 2521.87,
3646.1, 3271.04, 2568.42, 1565.41, 3412.02, 3051.4, 2440.17,
2394.38, 3193.14, 3375.54, 2527.95, 2873.94, 3788.03, 2772.86,
3642.49, 2346.12, 3266.1, 2070.62, 3788.6, 2456.32, 2664.18,
4027.62, 3024.04, 3128.92, 2118.12, 3440.9, 2670.26, 3509.11,
2866.53, 2894.65, 2650.5, 3331.08, 2845.44, 2743.79, 3379.72,
2291.97, 2707.31, 2322.75, 2895.41, 3134.62, 3487.83, 2406.54,
2601.1, 3402.14, 3654.46, 2472.66, 3096.43, 3274.65, 2832.33,
3587.96, 2749.68, 2826.06, 2994.97, 3716.02, 1818.68, 3152.86,
3221.07, 3425.32, 3067.17, 3768.08, 2812.19, 3779.1, 2696.86,
3011.5, 3730.84, 3452.3, 4110.65, 2654.11, 2894.65, 3929.58,
3852.82, 2842.59, 2874.13, 3369.27, 3537.23, 3616.46, 2374.62,
4057.45, 2607.94, 4312.81, 3009.41, 2804.21, 3322.91, 3634.89,
3336.97, 2886.86, 2931.13, 1909.5, 3503.03, 2006.97, 2485.01,
2910.42, 4531.88, 2551.89, 1662.5, 2990.98, 3540.84, 2938.16,
2657.91, 4274.24, 3140.32, 3744.33, 2806.49, 2524.53, 3311.51,
4121.48, 2350.3, 2866.34, 4018.5, 3291.75, 3649.52, 3109.54,
3500.94, 3542.17, 3612.66, 2899.4, 4104.57, 3526.78, 4146.75,
2300.33, 2562.91, 4213.63, 4100.01, 3145.83, 2939.87, 4007.29,
2846.58, 4704.59, 2711.11, 3873.15, 3187.82, 4595.15, 3081.99,
3104.6, 3413.54, 4192.35, 3727.99, 3541.22, 1597.71, 1307.39,
3863.65, 3120.75, 2696.29, 3094.53, 4412.56, 2998.01, 3245.77,
2754.05, 3197.13, 2867.48, 794.2), Store_2 = c(704.9, 1415.5,
1010.04, 1294.85, 1294.66, 1513.16, 1946.36, 1506.7, 1726.91,
1758.64, 2033.57, 1726.53, 1845.47, 1975.62, 1763.96, 1550.97,
1770.42, 1459.58, 1670.29, 1884.61, 1647.3, 1106.75, 1708.67,
1892.02, 1682.64, 1613.1, 1666.3, 1919.76, 1637.61, 1763.96,
1482.95, 1745.34, 1700.31, 1601.51, 1427.47, 1347.1, 2059.22,
1742.68, 1779.16, 1716.08, 1954.53, 1791.7, 1536.34, 1708.48,
1765.48, 1948.26, 1819.82, 1736.79, 1453.31, 2202.29, 2060.55,
2044.59, 1558.19, 1388.33, 1415.5, 1651.67, 1634.76, 1922.42,
1989.87, 1760.73, 1655.09, 1721.59, 1975.43, 1776.69, 2101.02,
1743.44, 1811.65, 1946.74, 1962.13, 1528.55, 1763.96, 2120.4,
1363.25, 1993.48, 1862.57, 1883.47, 2062.64, 2282.28, 1761.87,
2080.12, 1903.8, 2093.61, 1976.95, 1789.04, 1958.14, 1709.81,
1917.1, 1781.82, 2109.19, 1949.4, 1971.25, 2048.96, 1932.11,
2202.67, 1794.93, 2045.54, 1792.65, 2472.28, 1884.23, 2052.38,
1760.73, 2299.19, 2205.14, 2112.61, 1323.92, 1130.88, 1795.88,
1520.95, 1748, 1656.61, 2337.95, 1929.26, 1112.64, 1829.89, 2217.49,
2147.38, 2080.5, 2166.57, 2083.35, 2257.2, 2090.76, 1292.38,
1883.66, 2178.16, 1635.33, 2133.7, 1813.55, 1742.3, 2126.48,
2117.36, 1943.89, 2205.52, 2163.53, 2046.68, 1834.45, 2084.87,
1946.17, 1692.33, 1632.86, 2084.68, 1961.18, 2332.06, 2226.23,
2073.09, 1707.15, 2551.89, 2090, 2126.67, 2007.16, 2402.93, 2194.69,
2270.5, 2141.49, 2346.31, 2569.56, 2516.36, 648.66, 829.73, 2001.46,
1830.08, 1899.05, 1782.96, 2350.49, 2050.67, 2146.62, 1930.97,
2190.13, 1740.97, 481.08), Store_3 = c(118.37, 191.9, 115.71,
146.87, 181.45, 179.17, 190.38, 214.51, 215.65, 211.85, 216.41,
183.92, 212.99, 273.79, 195.51, 164.73, 182.59, 168.53, 182.02,
169.86, 165.68, 121.79, 179.36, 190.19, 183.16, 163.78, 224.01,
202.16, 163.21, 174.99, 175.56, 184.11, 189.24, 169.48, 167.96,
151.05, 200.83, 179.55, 209.95, 265.24, 201.78, 205.2, 207.29,
211.09, 170.62, 206.34, 184.49, 190.95, 174.61, 231.99, 207.1,
219.07, 246.24, 177.27, 174.04, 207.67, 193.8, 196.46, 218.88,
209.38, 213.94, 209.19, 238.83, 236.55, 234.46, 272.65, 221.73,
189.43, 195.51, 186.58, 192.47, 217.74, 139.46, 211.09, 210.33,
165.49, 184.68, 222.3, 244.72, 202.35, 191.71, 175.94, 155.42,
184.87, 175.94, 159.79, 179.17, 178.22, 193.99, 187.53, 223.44,
333.83, 205.01, 216.98, 180.88, 215.46, 195.7, 221.73, 201.78,
190.38, 209.38, 218.31, 212.8, 225.15, 231.23, 168.53, 205.77,
192.28, 207.86, 190.19, 238.45, 222.11, 119.51, 211.09, 240.73,
227.81, 216.6, 296.21, 210.71, 219.64, 187.72, 219.83, 180.69,
192.66, 182.4, 212.04, 205.01, 200.07, 245.86, 197.03, 259.54,
230.85, 212.99, 222.87, 200.64, 239.59, 178.22, 201.21, 186.58,
207.86, 214.32, 221.92, 196.27, 306.09, 197.03, 269.42, 205.01,
220.78, 228, 230.66, 220.78, 250.42, 230.28, 214.89, 265.62,
275.88, 61.75, 167.77, 219.45, 255.74, 240.16, 229.33, 251.75,
226.67, 276.64, 227.62, 232.18, 191.14, 54.34), Store_4 = c(548.53,
791.35, 981.35, 310.65, 918.46, 616.74, 1129.93, 271.32, 1079.39,
952.66, 1107.89, 406.41, 505.4, 1634.19, 729.22, 867.35, 533.71,
893.38, 1793.79, 1216.57, 755.44, 336.87, 1523.99, 969.19, 574.37,
617.88, 1303.21, 1253.62, 726.94, 935.37, 2129.9, 843.41, 1752.75,
574.94, 1670.48, 572.47, 1528.55, 534.09, 674.88, 2046.3, 867.73,
1132.21, 374.49, 1521.52, 734.16, 1354.51, 862.22, 967.1, 1022.58,
897.18, 577.79, 480.32, 1574.72, 726.37, 1117.58, 463.6, 1066.66,
1015.74, 1279.27, 436.24, 732.45, 1471.74, 1439.82, 459.8, 761.14,
1258.56, 798.76, 1451.79, 591.66, 1111.31, 1038.73, 1378.07,
315.97, 948.48, 1148.36, 1375.98, 819.85, 1263.5, 805.03, 1496.82,
601.35, 742.14, 1598.28, 1478.39, 1977.14, 784.13, 798.76, 1968.97,
1549.45, 706.04, 679.06, 986.67, 1399.92, 1197.19, 398.81, 1796.26,
619.21, 1618.99, 923.4, 561.45, 1353.18, 1117.39, 919.22, 548.91,
1375.79, 610.09, 1501.38, 293.36, 529.15, 1063.62, 1955.67, 400.52,
430.54, 950, 1082.24, 562.97, 361, 1811.65, 845.88, 1267.49,
528.39, 1012.32, 1246.97, 1750.28, 532.76, 520.41, 2000.32, 1349.38,
1277.18, 794.58, 1297.7, 1105.42, 1235.95, 630.23, 2069.48, 1202.32,
2022.36, 406.98, 743.47, 1921.28, 1924.32, 591.66, 516.61, 1627.92,
942.4, 1883.28, 416.1, 1525.7, 952.85, 1961.56, 666.9, 583.49,
1041.77, 1630.96, 893.19, 748.79, 887.49, 309.89, 1643.12, 1034.74,
557.27, 1082.62, 1810.51, 720.86, 822.51, 595.84, 775.01, 935.18,
258.78)), class = "data.frame", row.names = 154:322)
Поэтому я намерен преобразовать это данные, как в примере ниже (с помощью сводной или другой функции). Основная цель этого - сравнивать данные неделя за неделей с разными годами. Так, пожалуйста, кто-нибудь может мне помочь с этой проблемой?