Как реализовать Ladde rNet (2 U-Nets) в Керасе? (С доступным скриптом PyTorch в качестве ссылки) - PullRequest
0 голосов
/ 17 января 2020

Я пытаюсь реализовать архитектуру Ladde rNet (https://arxiv.org/abs/1810.07810) в Керасе, и только справочная версия PyTorch доступна для справки. Архитектура в статье состоит из 2 U-сетей: enter image description here

Коды для реализации PyTorch архитектуры Ladde rNet (получены из https://github.com/juntang-zhuang/LadderNet/blob/master/src/LadderNetv65.py) и реализация Keras U- Net (полученная из https://github.com/zhixuhao/unet/blob/master/model.py) соответственно:

drop = 0.25

def conv3x3(in_planes, out_planes, stride=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
                     padding=1, bias=True)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        if inplanes!= planes:
            self.conv0 = conv3x3(inplanes,planes)

        self.inplanes = inplanes
        self.planes = planes

        self.conv1 = conv3x3(planes, planes, stride)
        #self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        #self.conv2 = conv3x3(planes, planes)
        #self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
        self.drop = nn.Dropout2d(p=drop)

    def forward(self, x):
        if self.inplanes != self.planes:
            x = self.conv0(x)
            x = F.relu(x)

        out = self.conv1(x)
        #out = self.bn1(out)
        out = self.relu(out)

        out = self.drop(out)

        out1 = self.conv1(out)
        #out1 = self.relu(out1)

        out2 = out1 + x

        return F.relu(out2)


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride,
                               padding=1, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)
        out = self.relu(out)

        out = self.conv3(out)
        out = self.bn3(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class Initial_LadderBlock(nn.Module):

    def __init__(self,planes,layers,kernel=3,block=BasicBlock,inplanes = 3):
        super().__init__()
        self.planes = planes
        self.layers = layers
        self.kernel = kernel

        self.padding = int((kernel-1)/2)
        self.inconv = nn.Conv2d(in_channels=inplanes,out_channels=planes,
                                kernel_size=3,stride=1,padding=1,bias=True)

        # create module list for down branch
        self.down_module_list = nn.ModuleList()
        for i in range(0,layers):
            self.down_module_list.append(block(planes*(2**i),planes*(2**i)))

        # use strided conv instead of poooling
        self.down_conv_list = nn.ModuleList()
        for i in range(0,layers):
            self.down_conv_list.append(nn.Conv2d(planes*2**i,planes*2**(i+1),stride=2,kernel_size=kernel,padding=self.padding))

        # create module for bottom block
        self.bottom = block(planes*(2**layers),planes*(2**layers))

        # create module list for up branch
        self.up_conv_list = nn.ModuleList()
        self.up_dense_list = nn.ModuleList()
        for i in range(0, layers):
            self.up_conv_list.append(nn.ConvTranspose2d(in_channels=planes*2**(layers-i), out_channels=planes*2**max(0,layers-i-1), kernel_size=3,
                                                        stride=2,padding=1,output_padding=1,bias=True))
            self.up_dense_list.append(block(planes*2**max(0,layers-i-1),planes*2**max(0,layers-i-1)))


    def forward(self, x):
        out = self.inconv(x)
        out = F.relu(out)

        down_out = []
        # down branch
        for i in range(0,self.layers):
            out = self.down_module_list[i](out)
            down_out.append(out)
            out = self.down_conv_list[i](out)
            out = F.relu(out)

        # bottom branch
        out = self.bottom(out)
        bottom = out

        # up branch
        up_out = []
        up_out.append(bottom)

        for j in range(0,self.layers):
            out = self.up_conv_list[j](out) + down_out[self.layers-j-1]
            #out = F.relu(out)
            out = self.up_dense_list[j](out)
            up_out.append(out)

        return up_out

class LadderBlock(nn.Module):

    def __init__(self,planes,layers,kernel=3,block=BasicBlock,inplanes = 3):
        super().__init__()
        self.planes = planes
        self.layers = layers
        self.kernel = kernel

        self.padding = int((kernel-1)/2)
        self.inconv = block(planes,planes)

        # create module list for down branch
        self.down_module_list = nn.ModuleList()
        for i in range(0,layers):
            self.down_module_list.append(block(planes*(2**i),planes*(2**i)))

        # use strided conv instead of poooling
        self.down_conv_list = nn.ModuleList()
        for i in range(0,layers):
            self.down_conv_list.append(nn.Conv2d(planes*2**i,planes*2**(i+1),stride=2,kernel_size=kernel,padding=self.padding))

        # create module for bottom block
        self.bottom = block(planes*(2**layers),planes*(2**layers))

        # create module list for up branch
        self.up_conv_list = nn.ModuleList()
        self.up_dense_list = nn.ModuleList()
        for i in range(0, layers):
            self.up_conv_list.append(nn.ConvTranspose2d(planes*2**(layers-i), planes*2**max(0,layers-i-1), kernel_size=3,
                                                        stride=2,padding=1,output_padding=1,bias=True))
            self.up_dense_list.append(block(planes*2**max(0,layers-i-1),planes*2**max(0,layers-i-1)))


    def forward(self, x):
        out = self.inconv(x[-1])

        down_out = []
        # down branch
        for i in range(0,self.layers):
            out = out + x[-i-1]
            out = self.down_module_list[i](out)
            down_out.append(out)

            out = self.down_conv_list[i](out)
            out = F.relu(out)

        # bottom branch
        out = self.bottom(out)
        bottom = out

        # up branch
        up_out = []
        up_out.append(bottom)

        for j in range(0,self.layers):
            out = self.up_conv_list[j](out) + down_out[self.layers-j-1]
            #out = F.relu(out)
            out = self.up_dense_list[j](out)
            up_out.append(out)

        return up_out

class Final_LadderBlock(nn.Module):

    def __init__(self,planes,layers,kernel=3,block=BasicBlock,inplanes = 3):
        super().__init__()
        self.block = LadderBlock(planes,layers,kernel=kernel,block=block)

    def forward(self, x):
        out = self.block(x)
        return out[-1]

class LadderNetv6(nn.Module):
    def __init__(self,layers=3,filters=16,num_classes=2,inplanes=3):
        super().__init__()
        self.initial_block = Initial_LadderBlock(planes=filters,layers=layers,inplanes=inplanes)
        #self.middle_block = LadderBlock(planes=filters,layers=layers)
        self.final_block = Final_LadderBlock(planes=filters,layers=layers)
        self.final = nn.Conv2d(in_channels=filters,out_channels=num_classes,kernel_size=1)

    def forward(self,x):
        out = self.initial_block(x)
        #out = self.middle_block(out)
        out = self.final_block(out)
        out = self.final(out)
        #out = F.relu(out)
        out = F.log_softmax(out,dim=1)
        return out

и

def unet(pretrained_weights = None,input_size = (256,256,1)):
    inputs = Input(input_size)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
    drop4 = Dropout(0.5)(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
    drop5 = Dropout(0.5)(conv5)

    up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
    merge6 = concatenate([drop4,up6], axis = 3)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

    up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
    merge7 = concatenate([conv3,up7], axis = 3)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

    up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
    merge8 = concatenate([conv2,up8], axis = 3)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

    up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
    merge9 = concatenate([conv1,up9], axis = 3)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)

    model = Model(input = inputs, output = conv10)

    model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])

    #model.summary()

    if(pretrained_weights):
        model.load_weights(pretrained_weights)

    return model

Я очень новичок в PyTorch, и я все еще знакомлюсь с переходом между Keras и PyTorch, и я также надеюсь, что вышеупомянутое может помочь в этом моем переходе.

Что касается реализации в Keras для Ladde rNet, если я правильно понял статью, это просто две U-Nets, накладываемые бок о бок (называемые LaddderNetKeras) следующим образом:

def LadderNetKeras(pretrained_weights = None,input_size = (256,256,1)):
    inputs = Input(input_size)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(inputs)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
    drop4 = Dropout(0.5)(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
    drop5 = Dropout(0.5)(conv5)

    up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
    merge6 = concatenate([drop4,up6], axis = 3)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

    up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
    merge7 = concatenate([conv3,up7], axis = 3)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

    up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
    merge8 = concatenate([conv2,up8], axis = 3)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

    up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
    merge9 = concatenate([conv1,up9], axis = 3)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)

    # SECOND U-NET
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv10)
    conv1 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv1)
    pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool1)
    conv2 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv2)
    pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool2)
    conv3 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv3)
    pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool3)
    conv4 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv4)
    drop4 = Dropout(0.5)(conv4)
    pool4 = MaxPooling2D(pool_size=(2, 2))(drop4)

    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(pool4)
    conv5 = Conv2D(1024, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv5)
    drop5 = Dropout(0.5)(conv5)

    up6 = Conv2D(512, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(drop5))
    merge6 = concatenate([drop4,up6], axis = 3)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge6)
    conv6 = Conv2D(512, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv6)

    up7 = Conv2D(256, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv6))
    merge7 = concatenate([conv3,up7], axis = 3)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge7)
    conv7 = Conv2D(256, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv7)

    up8 = Conv2D(128, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv7))
    merge8 = concatenate([conv2,up8], axis = 3)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge8)
    conv8 = Conv2D(128, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv8)

    up9 = Conv2D(64, 2, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(UpSampling2D(size = (2,2))(conv8))
    merge9 = concatenate([conv1,up9], axis = 3)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(merge9)
    conv9 = Conv2D(64, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv9 = Conv2D(2, 3, activation = 'relu', padding = 'same', kernel_initializer = 'he_normal')(conv9)
    conv10 = Conv2D(1, 1, activation = 'sigmoid')(conv9)


    model = Model(input = inputs, output = conv10)

    model.compile(optimizer = Adam(lr = 1e-4), loss = 'binary_crossentropy', metrics = ['accuracy'])

    #model.summary()

    if(pretrained_weights):
        model.load_weights(pretrained_weights)

    return model

Спасибо и некоторые идеи будут высоко оценены!

1 Ответ

1 голос
/ 18 января 2020

Существует реализация ladde rnet в Keras, доступная здесь: https://github.com/divamgupta/ladder_network_keras/blob/master/ladder_net.py. Считайте это отправной точкой, я успешно использовал этот репозиторий.

Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...