Исходя из предположения, что не существует бесконечного количества часовых поясов, возможно, вы могли бы выполнить tz_convert
для каждой группы, например:
df['local_hour'] = df.groupby('time_zone')['hour'].apply(lambda x: x.dt.tz_convert(x.name))
print (df)
hour time_zone local_hour
0 2019-01-01 05:00:00+00:00 US/Eastern 2019-01-01 00:00:00-05:00
1 2019-01-01 07:00:00+00:00 US/Central 2019-01-01 01:00:00-06:00
2 2019-01-01 08:00:00+00:00 US/Mountain 2019-01-01 01:00:00-07:00
В примере это будет, вероятно, медленнее, чем вы, но для больших данных и групп, должно быть быстрее
Для сравнения скорости, с df
из 3-х предоставленных вами строк, это дает:
%timeit df.apply(lambda row: row['hour'].tz_convert(row['time_zone']), axis=1)
# 1.6 ms ± 102 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)
%timeit df.groupby('time_zone')['hour'].apply(lambda x: x.dt.tz_convert(x.name))
# 2.58 ms ± 126 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)
так что apply
быстрее, но если вы создаете фрейм данных в 1000 раз больше, но только с 3 часовыми зонами, то вы получаете групповое увеличение примерно в 20 раз:
df = pd.concat([df]*1000, ignore_index=True)
%timeit df.apply(lambda row: row['hour'].tz_convert(row['time_zone']), axis=1)
# 585 ms ± 42.1 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)
%timeit df.groupby('time_zone')['hour'].apply(lambda x: x.dt.tz_convert(x.name))
# 27.5 ms ± 2.15 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)