Керас отрицательный размерный размер Conv2D - PullRequest
0 голосов
/ 12 февраля 2020

Я уже некоторое время безуспешно играю с размерами ядра и расположением каналов. Я не совсем уверен, как рассчитать параметры корректора для слоев Conv2D, и я не уверен, насколько изменение этих параметров повлияет на сходство с моделью в статье.

Любая помощь будет принята с благодарностью.

Модель, которую я пытался построить на основе проекта в литературе

input_shape = (4, 30, 180)
model = Sequential()
model.add(Convolution2D(32, (8, 8), strides=(4,4), activation='relu', input_shape=(4,30,180), data_format='channels_first'))
model.add(Activation('relu'))
model.add(Convolution2D(64, (4, 4), strides=(2, 2)))
model.add(Activation('relu'))
model.add(Convolution2D(64, (3, 3), strides=(1, 1)))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(2))
model.add(Activation('linear'))

Сообщения об ошибках, которые я получил

Traceback (most recent call last):
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 1659, in _create_c_op
    c_op = c_api.TF_FinishOperation(op_desc)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Negative dimension size caused by subtracting 3 from 2 for 'conv2d_3/convolution' (op: 'Conv2D') with input shapes: [?,15,2,64], [3,3,64,64].

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
  File "stock_env.py", line 101, in <module>
    model.add(Convolution2D(64, (3, 3), strides=(1, 1)))
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/keras/engine/sequential.py", line 181, in add
    output_tensor = layer(self.outputs[0])
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/keras/engine/base_layer.py", line 457, in __call__
    output = self.call(inputs, **kwargs)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/keras/layers/convolutional.py", line 171, in call
    dilation_rate=self.dilation_rate)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/keras/backend/tensorflow_backend.py", line 3650, in conv2d
    data_format=tf_data_format)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/nn_ops.py", line 851, in convolution
    return op(input, filter)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/nn_ops.py", line 966, in __call__
    return self.conv_op(inp, filter)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/nn_ops.py", line 591, in __call__
    return self.call(inp, filter)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/nn_ops.py", line 208, in __call__
    name=self.name)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/ops/gen_nn_ops.py", line 1026, in conv2d
    data_format=data_format, dilations=dilations, name=name)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/op_def_library.py", line 788, in _apply_op_helper
    op_def=op_def)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/util/deprecation.py", line 507, in new_func
    return func(*args, **kwargs)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 3300, in create_op
    op_def=op_def)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 1823, in __init__
    control_input_ops)
  File "/Users/zacharyfrederick/opt/anaconda3/lib/python3.7/site-packages/tensorflow/python/framework/ops.py", line 1662, in _create_c_op
    raise ValueError(str(e))
ValueError: Negative dimension size caused by subtracting 3 from 2 for 'conv2d_3/convolution' (op: 'Conv2D') with input shapes: [?,15,2,64], [3,3,64,64].

Ответы [ 2 ]

0 голосов
/ 12 февраля 2020

Другой ответ верен при диагностике: после извилин ваше изображение уменьшается, и в какой-то момент ядро ​​становится больше, чем изображение. Попробуйте

1) уменьшить размеры ядра или

2) добавить , padding='same' к слою свертки.

использовать Рассчитать размер вывода в слое свертки рассчитать ваши размеры выходов.

0 голосов
/ 12 февраля 2020

У вас есть эта ошибка, потому что ваши ядра и шаги слишком велики для ваших входов, общий старт должен использовать ядра формы (3, 3) и шагов (1, 1).

Попробуйте прочитать о том, как свертка вычислено, чтобы дать вам интуитивное представление о том, как установить правильный размер ядра / шага: http://cs231n.github.io/convolutional-networks/

Более того, у вас есть ввод с channel first, поэтому вы установили свой первый конв с помощью channel first это здорово, но вы делаете это для всех своих сверток, потому что по умолчанию для сверток keras будет использоваться channel last.

Например, это работает:

input_shape = (4, 30, 180)
model = Sequential()
model.add(Conv2D(32, (8, 8), strides=(4, 4), activation='relu', input_shape=(4, 30, 180), data_format='channels_first'))
model.add(Activation('relu'))
model.add(Conv2D(64, (4, 4), strides=(1, 1), data_format='channels_first'))
model.add(Activation('relu'))
model.add(Conv2D(64, (3, 3), strides=(1, 1), data_format='channels_first'))
model.add(Activation('relu'))
model.add(Flatten())
model.add(Dense(512))
model.add(Activation('relu'))
model.add(Dense(2))
model.add(Activation('linear'))
Добро пожаловать на сайт PullRequest, где вы можете задавать вопросы и получать ответы от других членов сообщества.
...