JupyterHub singleuser не может использовать поддержку tenorflow gpu с помощью systemdspawner - PullRequest
4 голосов
/ 12 февраля 2020

( это кросспостинг к SO , трекер проблем jupyterhub и jupyterhub / systemdspawner трекер проблем )

У меня есть частная установка JupyterHub с использованием SystemdSpawner, где я пытаюсь запустить tenorflow с поддержкой gpu.

Я следовал инструкциям тензорного потока и альтернативно попробовал уже подготовленный AWS AMI (Deep Learning Base AMI (Ubuntu 18.04) Версия 21.0) с NDVIDIA, оба на AWS EC2 g4 экземплярах.

В обеих установках я могу использовать тензор потока с поддержкой gpu в (i) python 3.6 shell

>>> import tensorflow as tf
>>> tf.config.list_physical_devices('GPU')
2020-02-12 10:57:13.670937: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcuda.so.1
2020-02-12 10:57:13.698230: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-12 10:57:13.699066: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1555] Found device 0 with properties:
pciBusID: 0000:00:1e.0 name: Tesla T4 computeCapability: 7.5
coreClock: 1.59GHz coreCount: 40 deviceMemorySize: 14.73GiB deviceMemoryBandwidth: 298.08GiB/s
2020-02-12 10:57:13.699286: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudart.so.10.1
2020-02-12 10:57:13.700918: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcublas.so.10
2020-02-12 10:57:13.702512: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcufft.so.10
2020-02-12 10:57:13.702814: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcurand.so.10
2020-02-12 10:57:13.704561: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusolver.so.10
2020-02-12 10:57:13.705586: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcusparse.so.10
2020-02-12 10:57:13.709171: I tensorflow/stream_executor/platform/default/dso_loader.cc:44] Successfully opened dynamic library libcudnn.so.7
2020-02-12 10:57:13.709278: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-12 10:57:13.710120: I tensorflow/stream_executor/cuda/cuda_gpu_executor.cc:981] successful NUMA node read from SysFS had negative value (-1), but there must be at least one NUMA node, so returning NUMA node zero
2020-02-12 10:57:13.710893: I tensorflow/core/common_runtime/gpu/gpu_device.cc:1697] Adding visible gpu devices: 0
[PhysicalDevice(name='/physical_device:GPU:0', device_type='GPU')]

(некоторые предупреждения об узле NUMA, но gpu найден)

Также при использовании nvidia-smi и deviceQuery отображается графический процессор:

$ nvidia-smi
Wed Feb 12 10:39:44 2020
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 418.87.01    Driver Version: 418.87.01    CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla T4            On   | 00000000:00:1E.0 Off |                    0 |
| N/A   33C    P8     9W /  70W |      0MiB / 15079MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
$ /usr/local/cuda/extras/demo_suite/deviceQuery
/usr/local/cuda/extras/demo_suite/deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla T4"
  CUDA Driver Version / Runtime Version          10.1 / 10.0
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 15080 MBytes (15812263936 bytes)
  (40) Multiprocessors, ( 64) CUDA Cores/MP:     2560 CUDA Cores
  GPU Max Clock rate:                            1590 MHz (1.59 GHz)
  Memory Clock rate:                             5001 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 4194304 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 3 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 0 / 30
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.1, CUDA Runtime Version = 10.0, NumDevs = 1, Device0 = Tesla T4
Result = PASS

Теперь я запускаю JupyterHub, авторизируюсь и открываю терминал, там я получаю:

$ nvidia-smi
NVIDIA-SMI has failed because it couldn't communicate with the NVIDIA driver. Make sure that the latest NVIDIA driver is installed and running.

и

$ /usr/local/cuda/extras/demo_suite/deviceQuery
cuda/extras/demo_suite/deviceQuery Starting...

 CUDA Device Query (Runtime API) version (CUDART static linking)

cudaGetDeviceCount returned 38
-> no CUDA-capable device is detected
Result = FAIL

, а также

Screenshot 2020-02-12 12 08 46

Я подозреваю, что это какая-то "песочница", отсутствуют переменные ENV и т. Д. c. из-за того, что драйверы GPU не обнаружены в среде с одним пользователем, и, следовательно, поддержка TenorFlow не работает.

Есть идеи по этому поводу? Вероятно, это либо небольшая настройка конфигурации, либо из-за нерешаемой архитектуры вообще;)

1 Ответ

2 голосов
/ 15 февраля 2020

Установите c.SystemdSpawner.isolate_devices = False в вашем jupyterhub_config.py.

Вот выдержка из документации :

Установка этого значения в true дает отдельную, private / dev для каждого пользователя. Это предотвращает прямой доступ пользователя к аппаратным устройствам, что может стать потенциальным источником проблем безопасности. / dev / null, / dev / zero, / dev / random и псевдо-устройства ttyp уже будут подключены, поэтому большинство пользователей не должны видеть никаких изменений, когда это включено.

c.SystemdSpawner.isolate_devices = True

Для этого требуется версия systemd > 227. Если вы включите это в более ранних версиях, нерестится.

Nvidia использует устройства (то есть файлы в /dev). Пожалуйста, обратитесь к их документации для получения дополнительной информации . Там должны быть файлы с именем /dev/nvidia*. Изоляция устройств с помощью SystemdSpawner заблокирует доступ к этим устройствам Nvidia.


Есть ли способ изолировать устройства, и включить поддержку графического процессора?

Я не уверен ... но я могу предоставить указатели на документацию. Установка c.SystemdSpawner.isolate_devices = True устанавливает PrivateDevices=yes в возможном вызове systemd-run ( source ). Обратитесь к документации systemd для получения дополнительной информации о опции PrivateDevices.

Возможно, вы сможете сохранить isolate_devices = True и затем явно смонтировать устройства nvidia. Хотя я не знаю, как это сделать ...

...