Кажется, есть много названий для этой проблемы: трехиндексная задача присвоения , 3-мерное или в общем случае n-раздельное сопоставление . Хотя проблема состоит в NP-hard , как указано также в комментариях выше, умеренно большие экземпляры могут быть достаточно эффективно решены с помощью решателей (M) ILP .
Вот трехмерный пример с использованием Python и PuLP. Кроме того, код может обрабатывать другие измерения n>=2
, настраивая список измерений dims
. Естественно, и проблему, и решение можно представить в виде n-раздельной сети.
# import modules
import copy
import itertools
import matplotlib.pyplot as plt
import networkx as nx
import numpy as np
import pulp
# number of people (or items) per group (or dimension)
dims = [8, 4, 12]
# dummy weight array
# (one weight for each combination of people, with one from each group)
np.random.seed(0)
weights = np.random.rand(*dims)
# implement and solve problem
def maximum_npartite_matching(weights):
# get dimensions from weights array
dims = weights.shape
# prepare auxiliary variables
grid = [range(dim) for dim in dims]
varx = itertools.product(*grid)
# initialize variables
xxx = pulp.LpVariable.dicts('xxx', varx, cat=pulp.LpBinary)
# initialize optimization problem
problem = pulp.LpProblem('nD matching', pulp.LpMaximize)
# set objective
# sum_ijk... c_ijk... x_ijk...
problem += pulp.lpSum([weights[iii] * xxx[iii] for iii in xxx])
# set constraints
# sum_i x_ijk... <= 1
# sum_j x_ijk... <= 1
# sum...
for idi, dim in enumerate(dims):
for idv in range(dim):
gric = copy.deepcopy(grid)
gric[idi] = [idv]
vary = itertools.product(*gric)
problem += pulp.lpSum(xxx[iii] for iii in vary) <= 1
# solve problem
problem.solve()
# write binary variables to array
rex = weights.copy() * 0
for iii in xxx:
rex[iii] = xxx[iii].value()
# find optimal matching = path and path weights
whr = np.where(rex)
paths = np.array(whr).T
pathw = weights[whr]
# print paths (n columns) and corresponding weights (last column)
result = np.vstack([paths.T, pathw]).T
print(result)
return whr
# run matching
whr = maximum_npartite_matching(weights)
# define function for plotting results as network
def plot_results(weights, whr):
# create list of node positions for plotting and labeling
pon = [(idi, idv) for idi, dim in enumerate(dims) for idv in range(dim)]
# convert to dictionary
pos = {tuple(poi): poi for poi in pon}
# create empty graph
graph = nx.empty_graph(len(pos))
# rename labels according to plot position
mapping = {idp: tuple(poi) for idp, poi in enumerate(pon)}
graph = nx.relabel_nodes(graph, mapping)
# set edges from maximum n-partite matching
edges = []
# loop over paths
for whi in np.array(whr).T:
weight = weights[tuple(np.array(whj) for whj in whi)]
pairs = list(zip(whi[:-1], whi[1:]))
# loop over consecutive node pairs along path
for idp, (id0, id1) in enumerate(pairs):
edges.append(((idp+0, id0), (idp+1, id1), {'weight': weight}))
graph.add_edges_from(edges)
# set path weights as edge widths for plotting
width = np.array([edge['weight'] for id0, id1, edge in graph.edges(data=True)])
width = 3.0*width/max(width)
#plot network
fig = plt.figure(figsize=(16, 9))
obj = weights[whr].sum()
plt.title('total matching weight = %.2f' % obj)
nx.draw_networkx(graph, pos=pos, width=width, node_color='orange', node_size=700)
plt.axis('off')
return graph, pos
# run plotting
graph, pos = plot_results(weights, whr)