Pyspark udf (BeautifulSoup) и применение udf в датафреймах - PullRequest
0 голосов
/ 17 января 2020

Я пытаюсь определить свой udf для очистки html текста из тегов. Следующий код работает нормально:

from bs4 import BeautifulSoup
from pyspark.sql.functions import udf

text = '<p>Tervetuloa leikkimään, laulamaan, loruilemaan, liikkumaan, taiteilemaan ja tutkimaan leikkipuiston<br>perheaamuun! Leikki- ja toimintaympäristö mahdollistavat vanhemman ja lapsen yhteisen puuhan ja leikin<br>ja lapset saavat leikkiseuraa.<br>Vanhemmilla on mahdollisuus tutustua muihin lapsiperheisiin ja lapset saavat leikkiseuraa. Vanhemmat ja<br>lapset voivat osallistua toiminnan suunnittel'

text_clr = BeautifulSoup(text, 'html.parser').get_text()
print(text_clr)

Результат верный:

Tervetuloa leikkimään, laulamaan, loruilemaan, liikkumaan, taiteilemaan ja tutkimaan leikkipuistonperheaamuun! Leikki- ja toimintaympäristö mahdollistavat vanhemman ja lapsen yhteisen puuhan ja leikinja lapset saavat leikkiseuraa.Vanhemmilla on mahdollisuus tutustua muihin lapsiperheisiin ja lapset saavat leikkiseuraa. Vanhemmat jalapset voivat osallistua toiminnan suunnittel

Затем я определяю свой udf:

from bs4 import BeautifulSoup
from pyspark.sql.functions import udf

spark.udf.register("soup_udf",
                   lambda text_clr: BeautifulSoup(text, 'html.parser').get_text() if not text is None else 'NA',
                   "string")

text1 = '<p>Tervetuloa leikkimään, laulamaan, loruilemaan, liikkumaan, taiteilemaan ja tutkimaan leikkipuiston<br>perheaamuun! Leikki- ja toimintaympäristö mahdollistavat vanhemman ja lapsen yhteisen puuhan ja leikin<br>ja lapset saavat leikkiseuraa.<br>Vanhemmilla on mahdollisuus tutustua muihin lapsiperheisiin ja lapset saavat leikkiseuraa. Vanhemmat ja<br>lapset voivat osallistua toiminnan suunnittel'

text_clr1 = soup_udf(text1)
print(text_clr1)

И результат: Column<b'<lambda>(<p>Tervetuloa leikkim\xc3\xa4\xc3\xa4n, laulamaan, loruilemaan, liikkumaan, taiteilemaan ja tutkimaan leikkipuiston<br>perheaamuun! Leikki- ja toimintaymp\xc3\xa4rist\xc3\xb6 mahdollistavat vanhemman ja lapsen yhteisen puuhan ja leikin<br>ja lapset saavat leikkiseuraa.<br>Vanhemmilla on mahdollisuus tutustua muihin lapsiperheisiin ja lapset saavat leikkiseuraa. Vanhemmat ja<br>lapset voivat osallistua toiminnan suunnittel)'>

Почему результат отличается? Почему он не работает как udf?

Вторая часть проблемы заключается в том, что я хотел бы использовать мой soup_udf в dataframe.

display(dfAll4.select("id", soup_udf("desc").alias("desc_clr")).distinct())
dfAll4.select("id", soup_udf("desc").alias("desc_clr")).distinct().show(10,truncate=200)

В результате я получаю длинную ошибку сообщение, которое я не понимаю: - (

DataFrame[id: string, desc_clr: string]

---------------------------------------------------------------------------
Py4JJavaError                             Traceback (most recent call last)
<ipython-input-118-aa5fcd68d914> in <module>
     20 #display(df.select("id", squared_udf("id").alias("id_squared")))
     21 display(dfAll4.select("id", soup_udf("desc").alias("desc_clr")).distinct())
---> 22 dfAll4.select("id", soup_udf("desc").alias("desc_clr")).distinct().show(10,truncate=200)
     23 #dfAll4.withColumn("desc_clr", soup_udf(dfAll4.desc)).select("desc_clr").distinct().show(10, truncate=200)
     24 #dfAll4.select("desc", soup_udf(dfAll4.desc).alias("desc_clr")).distinct().show(10, truncate=200)

/usr/lib/spark-2.4.4/python/pyspark/sql/dataframe.py in show(self, n, truncate, vertical)
    380             print(self._jdf.showString(n, 20, vertical))
    381         else:
--> 382             print(self._jdf.showString(n, int(truncate), vertical))
    383 
    384     def __repr__(self):

/usr/lib/spark-2.4.4/python/lib/py4j-0.10.7-src.zip/py4j/java_gateway.py in __call__(self, *args)
   1255         answer = self.gateway_client.send_command(command)
   1256         return_value = get_return_value(
-> 1257             answer, self.gateway_client, self.target_id, self.name)
   1258 
   1259         for temp_arg in temp_args:

/usr/lib/spark-2.4.4/python/pyspark/sql/utils.py in deco(*a, **kw)
     61     def deco(*a, **kw):
     62         try:
---> 63             return f(*a, **kw)
     64         except py4j.protocol.Py4JJavaError as e:
     65             s = e.java_exception.toString()

/usr/lib/spark-2.4.4/python/lib/py4j-0.10.7-src.zip/py4j/protocol.py in get_return_value(answer, gateway_client, target_id, name)
    326                 raise Py4JJavaError(
    327                     "An error occurred while calling {0}{1}{2}.\n".
--> 328                     format(target_id, ".", name), value)
    329             else:
    330                 raise Py4JError(

Py4JJavaError: An error occurred while calling o3334.showString.
: org.apache.spark.SparkException: Job aborted due to stage failure: Task 2 in stage 426.0 failed 1 times, most recent failure: Lost task 2.0 in stage 426.0 (TID 28703, localhost, executor driver): net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for bs4.element.NavigableString)
    at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
    at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
    at net.razorvine.pickle.Unpickler.load_newobj(Unpickler.java:711)
    at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:259)
    at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
    at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:90)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:89)
    at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:435)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:441)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage16.agg_doAggregateWithKeys_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage16.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    at java.lang.Thread.run(Thread.java:748)

Driver stacktrace:
    at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1889)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1877)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1876)
    at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
    at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
    at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1876)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
    at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:926)
    at scala.Option.foreach(Option.scala:257)
    at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:926)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:2110)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2059)
    at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:2048)
    at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:49)
    at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:737)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2061)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2082)
    at org.apache.spark.SparkContext.runJob(SparkContext.scala:2101)
    at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:365)
    at org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
    at org.apache.spark.sql.Dataset.org$apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:3389)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset$$anonfun$52.apply(Dataset.scala:3370)
    at org.apache.spark.sql.execution.SQLExecution$$anonfun$withNewExecutionId$1.apply(SQLExecution.scala:78)
    at org.apache.spark.sql.execution.SQLExecution$.withSQLConfPropagated(SQLExecution.scala:125)
    at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:73)
    at org.apache.spark.sql.Dataset.withAction(Dataset.scala:3369)
    at org.apache.spark.sql.Dataset.head(Dataset.scala:2550)
    at org.apache.spark.sql.Dataset.take(Dataset.scala:2764)
    at org.apache.spark.sql.Dataset.getRows(Dataset.scala:254)
    at org.apache.spark.sql.Dataset.showString(Dataset.scala:291)
    at sun.reflect.GeneratedMethodAccessor81.invoke(Unknown Source)
    at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
    at java.lang.reflect.Method.invoke(Method.java:498)
    at py4j.reflection.MethodInvoker.invoke(MethodInvoker.java:244)
    at py4j.reflection.ReflectionEngine.invoke(ReflectionEngine.java:357)
    at py4j.Gateway.invoke(Gateway.java:282)
    at py4j.commands.AbstractCommand.invokeMethod(AbstractCommand.java:132)
    at py4j.commands.CallCommand.execute(CallCommand.java:79)
    at py4j.GatewayConnection.run(GatewayConnection.java:238)
    at java.lang.Thread.run(Thread.java:748)
Caused by: net.razorvine.pickle.PickleException: expected zero arguments for construction of ClassDict (for bs4.element.NavigableString)
    at net.razorvine.pickle.objects.ClassDictConstructor.construct(ClassDictConstructor.java:23)
    at net.razorvine.pickle.Unpickler.load_reduce(Unpickler.java:707)
    at net.razorvine.pickle.Unpickler.load_newobj(Unpickler.java:711)
    at net.razorvine.pickle.Unpickler.dispatch(Unpickler.java:259)
    at net.razorvine.pickle.Unpickler.load(Unpickler.java:99)
    at net.razorvine.pickle.Unpickler.loads(Unpickler.java:112)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:90)
    at org.apache.spark.sql.execution.python.BatchEvalPythonExec$$anonfun$evaluate$1.apply(BatchEvalPythonExec.scala:89)
    at scala.collection.Iterator$$anon$12.nextCur(Iterator.scala:435)
    at scala.collection.Iterator$$anon$12.hasNext(Iterator.scala:441)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage16.agg_doAggregateWithKeys_0$(Unknown Source)
    at org.apache.spark.sql.catalyst.expressions.GeneratedClass$GeneratedIteratorForCodegenStage16.processNext(Unknown Source)
    at org.apache.spark.sql.execution.BufferedRowIterator.hasNext(BufferedRowIterator.java:43)
    at org.apache.spark.sql.execution.WholeStageCodegenExec$$anonfun$13$$anon$1.hasNext(WholeStageCodegenExec.scala:636)
    at scala.collection.Iterator$$anon$11.hasNext(Iterator.scala:409)
    at org.apache.spark.shuffle.sort.BypassMergeSortShuffleWriter.write(BypassMergeSortShuffleWriter.java:125)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:99)
    at org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:55)
    at org.apache.spark.scheduler.Task.run(Task.scala:123)
    at org.apache.spark.executor.Executor$TaskRunner$$anonfun$10.apply(Executor.scala:408)
    at org.apache.spark.util.Utils$.tryWithSafeFinally(Utils.scala:1360)
    at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:414)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
    ... 1 more

Может кто-нибудь помочь, пожалуйста?

Большое спасибо, Алисия

Ответы [ 2 ]

1 голос
/ 24 января 2020

Наконец-то я заработал:

from pyspark.sql.functions import udf
from simplified_scrapy.simplified_doc import SimplifiedDoc 

#define and register udf

def text_simple_udf(text_in): 
    return SimplifiedDoc(text_in).text

spark.udf.register("text_simple_udf", text_simple_udf)

#test the udf with a sample from the dataframe:

tst = text_simple_udf('<p>Tervetuloa leikkimään, laulamaan, loruilemaan, liikkumaan, taiteilemaan ja tutkimaan leikkipuiston<br>perheaamuun! Leikki- ja toimintaympäristö mahdollistavat vanhemman ja lapsen yhteisen puuhan ja leikin<br>ja lapset saavat leikkiseuraa.<br>Vanhemmilla on mahdollisuus tutustua muihin lapsiperheisiin ja lapset saavat leikkiseuraa. Vanhemmat ja<br>lapset voivat osallistua toiminnan suunnittel')
#print(tst)

# apply in dataframe:
dfAll4.selectExpr("desc", "(text_simple_udf(desc)) as desc_simpl").show(10, truncate=50)

#result:
+--------------------+--------------------+
|                desc|          desc_simpl|
+--------------------+--------------------+
|<p>Tervetuloa lei...|Tervetuloa leikki...|
|<p>Tervetuloa lei...|Tervetuloa leikki...|
|<p>Leikkipuiston ...|Leikkipuiston vau...|
|<p>Kaupunginvaltu...|Kaupunginvaltuust...|
|<p>Kaupunginvaltu...|Kaupunginvaltuust...|
|<p>Pienet jalat l...|Pienet jalat liik...|
|<p>Pienet jalat l...|Pienet jalat liik...|
|<p>Pienet jalat l...|Pienet jalat liik...|
|<p>Tervetuloa lei...|Tervetuloa leikki...|
|<p>Tervetuloa lei...|Tervetuloa leikki...|
+--------------------+--------------------+
only showing top 10 rows
1 голос
/ 18 января 2020

Может быть, это потому, что buautifulsoup слишком сильно зависит. Попробуйте эту библиотеку. Это не зависит от других библиотек

from simplified_scrapy.simplified_doc import SimplifiedDoc 
text1 = '<p>Tervetuloa leikkimään, laulamaan, loruilemaan, liikkumaan, taiteilemaan ja tutkimaan leikkipuiston<br>perheaamuun! Leikki- ja toimintaympäristö mahdollistavat vanhemman ja lapsen yhteisen puuhan ja leikin<br>ja lapset saavat leikkiseuraa.<br>Vanhemmilla on mahdollisuus tutustua muihin lapsiperheisiin ja lapset saavat leikkiseuraa. Vanhemmat ja<br>lapset voivat osallistua toiminnan suunnittel'

doc = SimplifiedDoc(text1)
print (doc.text)

Результат :

Tervetuloa leikkimään, laulamaan, loruilemaan, liikkumaan, taiteilemaan ja tutkimaan leikkipuistonperheaamuun! Leikki- ja toimintaympäristö mahdollistavat vanhemman ja lapsen yhteisen puuhan ja leikinja lapset saavat leikkiseuraa.Vanhemmilla on mahdollisuus tutustua muihin lapsiperheisiin ja lapset saavat leikkiseuraa. Vanhemmat jalapset voivat osallistua toiminnan suunnittel
...