Мне удалось извлечь данные из двух отдельных xlsx и объединить их в один лист xlsx, используя pandas.
Я знаю, что у меня есть таблица, которая выглядит следующим образом.
Home Start Date Gross Earning Tax Gross Rental Commission Net Rental
3157 2020-03-26 00:00:00 -268.8 -28.8 -383.8 -36 -338.66
3157 2020-03-26 00:00:00 268.8 28.8 153.8 36 108.66
3157 2020-03-24 00:00:00 264.32 28.32 149.32 35.4 104.93
3157 2020-03-13 00:00:00 625.46 67.01 510.46 83.7675 405.4225
3157 2020-03-13 00:00:00 558.45 0 443.45 83.7675 342.9325
3157 2020-03-11 00:00:00 142.5 0 27.5 21.375 1.855
3157 2020-03-11 00:00:00 159.6 17.1 44.6 21.375 17.805
3157 2020-03-03 00:00:00 349.52 0 234.52 52.428 171.612
3157 2020-03-03 00:00:00 391.46 41.94 276.46 52.428 210.722
Итак, если вы посмотрите на первые две строки, имя в столбце Home будет тем же (в этом примере 3157 Tocoa) но они также одинаковы для следующих нескольких рядов. Но в столбце «Дата начала» только первые два элемента в этом столбце совпадают (в данном случае, 26.03.20, 12:00:00). Поэтому мне нужно сделать следующее:
Если даты совпадают, а дом совпадает, тогда мне нужна сумма всех следующих столбцов. (В этом случае мне понадобится сумма -268,8 и 268,8, сумма -28,8 и 28,8 и т. Д.) Также важно упомянуть, что есть случаи, когда в общей сложности более двух совпадающих дат начала.
Я включу код, который использовал, чтобы добраться туда, где я сейчас нахожусь, я хотел бы отметить, что я довольно новичок в python, поэтому я уверен, что есть способ сделать это очень просто, но Я просто не знаком. Я также новичок в stackoverflow, поэтому, если я что-то упустил или добавил что-то, что я должен иметь, пожалуйста, прости меня
import pandas as pd
from pandas import ExcelWriter
from pandas import ExcelFile
import numpy as np
import matplotlib.pyplot as plt
import os
# class airbnb:
#Gets the location path for the reports that come raw from the channel
airbnb_excel_file = (r'C:\Users\Christopher\PycharmProjects\Reporting with
python\Data_to_read\Bnb_feb_report.xlsx')
empty_excel_file = (r'C:\Users\Christopher\PycharmProjects\Reporting with
python\Data_to_read\empty.xlsx')
#Defines the data frame
df_airbnb = pd.read_excel(airbnb_excel_file)
df_empty = pd.read_excel(empty_excel_file)
gross_earnings = df_airbnb['Gross Earnings']
tax_amount = df_airbnb['Gross Earnings'] * 0.06
gross_rental = df_airbnb['Gross Earnings'] - df_airbnb['Cleaning Fee']
com = ((gross_rental - tax_amount) + df_airbnb['Cleaning Fee']) * 0.15
net_rental = (gross_rental - (com + df_airbnb['Host Fee']))
house = df_airbnb['Listing']
start_date = df_airbnb['Start Date']
# df = pd.DataFrame(df_empty)
# df_empty.replace('nan', '')
#
# print(net_rental)
df_report = pd.DataFrame(
{'Home': house, 'Start Date': start_date, 'Gross Earning': gross_earnings, 'Tax': tax_amount,
'Gross Rental': gross_rental, 'Commission': com, 'Net Rental': net_rental})
df_report.loc[(df_report.Home == 'New house, Minutes from Disney & Attraction'), 'Home'] = '3161
Tocoa'
df_report.loc[(df_report.Home == 'Brand-New House, located minutes from Disney 5151'), 'Home'] =
'5151 Adelaide'
df_report.loc[(df_report.Home == 'Luxury House, Located Minutes from Disney-World 57'), 'Home'] =
'3157 Tocoa'
df_report.loc[(df_report.Home == 'Big house, Located Minutes from Disney-World 55'), 'Home'] = '3155
Tocoa'
df_report.sort_values(by=['Home'], inplace=True)
# writer = ExcelWriter('Final_Report.xlsx')
# df_report.to_excel(writer, 'sheet1', index=False)
# writer.save()
# class homeaway:
homeaway_excel_file = (r'C:\Users\Christopher\PycharmProjects\Reporting with
python\Data_to_read\PayoutSummaryReport2020-03-01_2020-03-29.xlsx')
df_homeaway = pd.read_excel(homeaway_excel_file)
cleaning = int(115)
house = df_homeaway['Address']
start_date = df_homeaway['Check-in']
gross_earnings = df_homeaway['Gross booking amount']
taxed_amount = df_homeaway['Lodging Tax Owner Remits']
gross_rental = (gross_earnings - cleaning)
com = ((gross_rental-taxed_amount) + cleaning) * 0.15
net_rental = (gross_rental - (com + df_homeaway['Deductions']))
df_report2 = pd.DataFrame(
{'Home': house, 'Start Date': start_date, 'Gross Earning': gross_earnings, 'Tax': taxed_amount,
'Gross Rental': gross_rental, 'Commission': com, 'Net Rental': net_rental})
# writer = ExcelWriter('Final_Report2.xlsx')
# df_report2.to_excel(writer, 'sheet1', index=False)
# writer.save()
df_combined = pd.concat([df_report, df_report2])
writer = ExcelWriter('Final_Report_combined.xlsx')
df_report2.to_excel(writer, 'sheet1', index=False)
writer.save()