Я предлагаю следующее:
import nltk
import pandas as pd
tokenizer = nltk.RegexpTokenizer(r'\w+')
price = pd.DataFrame({"brand": ["AMD", "AMD", "AMD", "AMD"],
"model" : ["2650", "3800", "5150", "4200"],
"cores" : [2,4,4,4],
"tdp" : [25,25,25,25]})
performance = pd.DataFrame({"name": ["AMD Athlon 64 3200+",
"AMD Athlon 64 X2 3800+",
"AMD Athlon 64 X2 4000+",
"AMD Athlon 64 X2 4200+"],
"score" : [6,5,6,18]})
# I break down the name in performance and suppress capital letters
performance["tokens"] = (performance["name"].str.lower()
.apply(tokenizer.tokenize))
# And the same for price
price["tokens"] = price.loc[:,"brand"].values + " " + \
price.loc[:,"model"].values
price["tokens"] = (price["tokens"].str.lower()
.apply(tokenizer.tokenize))
# cartesian product
price["key"] = 1
performance["key"] = 1
df = pd.merge(price,performance, on = "key")
# define my criteria for match
n_match = 2
df['intersection'] =\
[len(list(set(a).intersection(set(b))))
for a, b in zip(df.tokens_x,
df.tokens_y)]
df = df.loc[df["intersection"]>=n_match,:]
Я переопределил ваши наборы данных, чтобы в этом примере у нас было несколько совпадений. Вот что я получил в результате:
brand model cores ... score tokens_y intersection
5 AMD 3800 4 ... 5 [amd, athlon, 64, x2, 3800] 2
15 AMD 4200 4 ... 18 [amd, athlon, 64, x2, 4200] 2
[2 rows x 10 columns]
Вы можете переопределить свои критерии для n_match
Я поставил два, потому что казалось, что это было то, что требовалось для набора данных. Надеюсь, это поможет