Я пытаюсь воспроизвести результаты из Stata. Набор данных представляет собой несбалансированную панель, которая выглядит как
ï..region id year grpmlnr grppc cpi
1 region1 1 1998 18245.5 12242.8 167.7
2 region1 1 1999 32060.6 21398.0 140.8
3 region1 1 2000 42074.5 27969.5 120.9
Первоначальная регрессия в Stata была объединена OLS в форме reg y x1 x2 x3 x4
и дала следующий вывод
Coef. Std. Err. t P>|t| [95% Conf. Interval]
-------------------+----------------------------------------------------------------
x1 | -.0045519 .0070808 -0.64 0.520 -.0184413 .0093376
x2 | -.1598071 .0345597 -4.62 0.000 -.2275982 -.092016
x3 | 4.08e-06 4.16e-06 0.98 0.327 -4.08e-06 .0000122
x4 | -.0000874 .0000244 -3.58 0.000 -.0001354 -.0000395
_cons | .2899655 .0655542 4.42 0.000 .1613767 .4185542
Number of obs = 1489, R=squared = 0.0242, Adj R-squared = 0.0216
Когда я запускаю
pooledols<-plm(y~
x1
+ x2
+ x3
+ x4,
data=dataset, index=c('ï..region', 'year'), model='pooling')
summary(pooledols)
Я получаю
Coefficients:
Estimate Std. Error t-value Pr(>|t|)
(Intercept) 1.1228e-02 6.3812e-02 0.1760 0.8603497
x1 3.5982e-03 6.7284e-03 0.5348 0.5928858
x2 4.3466e-02 3.1060e-03 13.9943 < 2.2e-16 ***
x3 1.3737e-05 3.9212e-06 3.5033 0.0004732 ***
x4 -2.7368e-05 2.3573e-05 -1.1610 0.2458259
с
number of obs = 1489, R=squared = 0.12554, and Adj R-squared = 0.12319.
У кого-нибудь есть какие-либо предложения? Я уверен, что набор данных одинаков в обоих случаях. В других местах я видел, что для моделей со случайными эффектами важно, как Stata и R справляются с несбалансированными панелями, но я не уверен, что это уместно здесь.
Редактировать: вот подмножество моих данных, где x1, x2, x3, x4
соответствует переменным, используемым в регрессиях:
region year x1 x2 x3 x4 y
RegionA 1998 9.412693 7.316763 655 212
RegionA 1999 9.412693 4.662889 720 232 0.55836
RegionA 2000 9.412693 3.669467 741 303 0.267817
RegionA 2001 9.412693 3.480852 748 304 0.169225
RegionA 2002 9.412693 3.434518 720 347 0.221187
RegionA 2003 9.412693 3.252523 719 393 0.195911
RegionA 2004 9.412693 2.30941 731 426 0.408409
RegionA 2005 9.412693 2.03653 714 477 0.237577
RegionA 2006 9.412693 1.857329 752 512 0.209052
RegionA 2007 9.412693 1.796764 735 527 0.278823
RegionA 2008 9.412693 1.59614 759 543 0.288872
RegionA 2009 9.412693 1.925464 793 522 -0.04663
RegionA 2010 9.412693 1.685813 779 508 0.267205
RegionA 2011 9.412693 1.570235 767 478 0.241406
RegionA 2012 9.412693 1.689142 787 446 0.068759
RegionA 2013 9.412693 1.819899 810 420 0.03955
RegionA 2014 9.412693 1.859676 814 382 0.083057
RegionA 2015 9.412693 1.860045 806 342 0.11043
RegionA 2016 9.412693 1.921366 822 326 0.048621
RegionA 2017 9.412693 1.911606 823 316 0.074802
RegionB 1998 8.94365 10.81936 633 129
RegionB 1999 8.94365 7.110605 698 152 0.428163
RegionB 2000 8.94365 5.014219 665 192 0.393189
RegionB 2001 8.94365 4.521011 652 208 0.21136
RegionB 2002 8.94365 4.237961 636 276 0.227971
RegionB 2003 8.94365 4.373059 651 301 0.167702
RegionB 2004 8.94365 3.992342 659 320 0.165888
RegionB 2005 8.94365 3.276585 648 345 0.280323
RegionB 2006 8.94365 2.853214 660 392 0.219669
RegionB 2007 8.94365 3.031803 661 401 0.233179
RegionB 2008 8.94365 2.598884 656 457 0.210191
RegionB 2009 8.94365 2.773871 638 472 0.011586
RegionB 2010 8.94365 2.618205 650 443 0.157882
RegionB 2011 8.94365 2.474298 644 410 0.178349
RegionB 2012 8.94365 2.257853 644 387 0.182941
RegionB 2013 8.94365 2.362653 638 336 0.06543
RegionB 2014 8.94365 2.35502 635 320 0.108892
RegionB 2015 8.94365 2.308449 624 282 0.119917
RegionB 2016 8.94365 2.607521 625 252 0.038878
RegionB 2017 8.94365 2.583059 612 223 0.096383
RegionC 1998 9.143153 7.710033 771 120
RegionC 1999 9.143153 4.82562 810 139 0.50267
RegionC 2000 9.143153 4.112946 798 184 0.309938
RegionC 2001 9.143153 3.384044 785 181 0.254107
RegionC 2002 9.143153 3.639285 808 280 0.192077
RegionC 2003 9.143153 3.58782 796 302 0.214723
RegionC 2004 9.143153 2.960462 806 319 0.190094
RegionC 2005 9.143153 2.528599 809 361 0.165926
RegionC 2006 9.143153 2.252368 792 393 0.26823
Редактировать 2: Это результаты для первая регрессия, идентичная регрессии Ника Кокса:
lm(formula = y ~ x1 + x2 + x3 + x4, data = replicate)
Residuals:
Min 1Q Median 3Q Max
-0.23488 -0.06966 0.00142 0.05492 0.20161
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.792e+00 8.772e-01 -2.043 0.0475 *
x1 1.865e-01 1.149e-01 1.623 0.1122
x2 8.823e-02 1.989e-02 4.437 6.72e-05 ***
x3 -6.175e-05 3.271e-04 -0.189 0.8512
x4 1.995e-04 2.242e-04 0.890 0.3786`